7.如圖所示,BE=CF,BF⊥AC于點(diǎn)F,CE⊥AB于點(diǎn)E,BF和CE交于點(diǎn)D,求證:AD平分∠BAC.

分析 先證三角形BDE與三角形CDF全等,從而得出DE=DF,根據(jù)角平分線的判定理即可得出結(jié)論.

解答 證明:∵BF⊥AC于點(diǎn)F,CE⊥AB于點(diǎn)E,
∴∠BDE+∠B=∠CDF+∠C=90°,
∵∠CDF=∠BDE,
∴∠B=∠C,
在△BDE和△CDF中,
$\left\{\begin{array}{l}{∠B=∠C}\\{BE=CF}\\{∠BED=∠CFD}\end{array}\right.$,
∴△BDE≌△CDF(ASA),
∴DE=DF,
∴AD平分∠BAC.

點(diǎn)評(píng) 本題主要考查了全等三角形的判定與性質(zhì)以及角平分線的判定,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.求下列各式的值
(1)-$\sqrt{121}$=-11;(2)±$\sqrt{4}$=±2
(3)$\sqrt{\frac{36}{49}}$=$\frac{6}{7}$;(4)$\sqrt{\frac{1}{4}}$=$\frac{1}{2}$
(5)±$\sqrt{0.01}$=±0.1;(6)$\sqrt{0.09}$=0.3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在?ABCD中,DF⊥AB于F,DE⊥BC于E,
(1)∠A=40°,求∠FDE的度數(shù);
(2)若DE=4,DF=6.?ABCD的周長(zhǎng)為40,求S?ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線y=ax2+bx+c(a<0)經(jīng)過點(diǎn)A(-3,0)、B(1,0),且與y軸交于點(diǎn)C,設(shè)拋物線的頂點(diǎn)為D.
(1)求點(diǎn)C、D的坐標(biāo)(用含a的式子表示);
(2)當(dāng)a變化時(shí),△ACD能否為直角三角形?若能?求出所有符合條件的a的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,點(diǎn)A,B,C,D在同一直線上,AB=CD,AE∥CF且AE=CF,求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.已知,如圖AB⊥BD,CD⊥BD,∠A=∠C.求證:(1)AB=DC;(2)AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知:在平面直角坐標(biāo)系中.放入一塊等腰直角三角板ABC,∠BAC=90°,AB=AC,A點(diǎn)的坐標(biāo)為(0,2),B點(diǎn)的坐標(biāo)為(4.0).
(1)求C點(diǎn)的坐標(biāo);
(2)D為△ABC內(nèi)-點(diǎn)(AD>2),連AD.并以AD為邊作等腰直角三角形ADE,∠DAE=90°,AD=AE.連CD、BE,試判斷線段CD、BE的位置及數(shù)量關(guān)系,并給出你的證明;
(3)旋轉(zhuǎn)△ADE,使D點(diǎn)剛好落在x軸的負(fù)半軸,連CE交y軸于M.求證:①EM=CM;②BD=2AM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.已知:如圖,△ABC、△CDE、△EHK都是等邊三角形,且A、D、K共線,AD=DK,求證:△HBD也是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.代數(shù)式3x2+2x-4的次數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案