【題目】在△ABC和△DEF中,AB=DE,∠A=∠D,要使△ABC≌△DEF,必須增加的一個條件是_____(填寫一個即可).
【答案】此題答案不唯一,如AC=DF或∠B=∠E或∠C=∠F等
【解析】
由在△ABC和△DEF中,AB=DE,∠A=∠D,要使△ABC≌△DEF,根據(jù)三角形全等的判定定理:SAS,ASA,AAS即可得可添加條件為:AC=DF或∠B=∠E或∠C=∠F等.
可添加條件為:AC=DF或∠B=∠E或∠C=∠F等;
①當(dāng)添加AC=DF時,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(SAS);
②當(dāng)添加∠B=∠E時,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA);
③當(dāng)添加∠C=∠F時,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(AAS).
故答案為:此題答案不唯一,如AC=DF或∠B=∠E或∠C=∠F等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個正整數(shù)能表示為兩個正整數(shù)的平方差,則稱這個正整數(shù)為“智慧數(shù)”(如,).已知智慧數(shù)按從小到大的順序構(gòu)成如下數(shù)列:則第個智慧數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某農(nóng)場有A、B兩種型號的收割機(jī)共20臺,每臺A型收割機(jī)每天可收大麥100畝或者小麥80畝,每臺B型收割機(jī)每天可收大麥80畝或者小麥60畝,該農(nóng)場現(xiàn)有19 000畝大麥和11 500畝小麥先后等待收割.先安排這20臺收割機(jī)全部收割大麥,并且恰好10天時間全部收完.
(1)問A、B兩種型號的收割機(jī)各多少臺?
(2)由于氣候影響,要求通過加班方式使每臺收割機(jī)每天多完成10%的收割量,問這20臺收割機(jī)能否在一周時間內(nèi)完成全部小麥?zhǔn)崭钊蝿?wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AC的中點(diǎn),且∠A+∠CDB=90°,過點(diǎn)A,D作⊙O,使圓心O在AB上,⊙O與AB交于點(diǎn)E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE= : ,BC=6,求切線BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一節(jié)數(shù)學(xué)課上,老師布置了一道課堂練習(xí):“如圖,在△ABC中,∠B=∠C,求證:AB=AC“,小明發(fā)現(xiàn),他取BC的中點(diǎn)D,連接AD后,無法證明△ABD≌△ACD,故舉手提問老師,老師聽了他的困惑,告訴他只要再作兩條垂線段就可以證明了,你知道如何繼續(xù)證明嗎?請你寫下完整的證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠為了檢驗(yàn)甲、乙兩車間生產(chǎn)的同一款新產(chǎn)品的合格情況(尺寸范圍為~的產(chǎn)品為合格〉.隨機(jī)各抽取了20個祥品迸行檢測.過程如下:
收集數(shù)據(jù)(單位:):
甲車間:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.
乙車間:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.
整理數(shù)據(jù):
組別頻數(shù) | 165.5~170.5 | 170.5~175.5 | 175.5~180.5 | 180.5~185.5 | 185.5~190.5 | 190.5~195.5 |
甲車間 | 2 | 4 | 5 | 6 | 2 | 1 |
乙車間 | 1 | 2 | 2 | 0 |
分析數(shù)據(jù):
車間 | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
甲車間 | 180 | 185 | 180 | 43.1 |
乙車間 | 180 | 180 | 180 | 22.6 |
應(yīng)用數(shù)據(jù);
(1)計算甲車間樣品的合格率.
(2)估計乙車間生產(chǎn)的1000個該款新產(chǎn)品中合格產(chǎn)品有多少個?
(3)結(jié)合上述數(shù)據(jù)信息.請判斷哪個車間生產(chǎn)的新產(chǎn)品更好.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 與x軸交于點(diǎn)A,B,與y軸負(fù)半軸交于點(diǎn)C且OB=OC,點(diǎn)P為拋物線上的一個動點(diǎn),且點(diǎn)P位于x軸下方,點(diǎn)P與點(diǎn)C不重合。
(1)求拋物線的解析式
(2)若△PAC的面積為 ,求點(diǎn)P的坐標(biāo)
(3)若以A、B、C、P為頂點(diǎn)的四邊形面積記作S,則S取何值時,對應(yīng)的點(diǎn)P有且只有2個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com