精英家教網(wǎng)如圖,矩形紙片ABCD,點E是AB上一點,且BE:EA=5:3,EC=15
5
,把△BCE沿折痕EC向上翻折,若點B恰好落在AD邊上,設這個點為F,若⊙O內切于以F、E、B、C為頂點的四邊形,則⊙O的面積=
 
分析:連接OB,把△BCE沿折痕EC向上翻折,若點B恰好落在AD邊上,則BE=EF,BC=CF;再由BE:EA=5:3可以設BE=5x,EA=3x,則FA=4x,CD=8x,又CF=AD,CF2=CD2+DF2,可得CF=10x,DF=6x,則BC=10x;在Rt△EBC中,由勾股定理可求得x的值,再由面積S△EBC=S△OEB+S△OBC求得⊙O半徑,求出面積.
解答:精英家教網(wǎng)解:連接OB,
由于把△BCE沿折痕EC向上翻折,若點B恰好落在AD邊上,
則BE=EF,BC=CF;
由BE:EA=5:3,設BE=5x,EA=3x,
則FA=4x,CD=8x,又CF=AD,∴CF2=CD2+DF2,即CF2=(8x)2+(CF-4x)2,可得CF=10x,DF=6x,則BC=10x;
在Rt△EBC中,EB2+BC2=EC2,即(5x)2+(10x)2=(15
5
2
解得:x=3,則BE=15,BC=30.
再由S△EBC=S△OEB+S△OBC,則
1
2
×BE×BC=
1
2
×BE×r+
1
2
×BC×r,
解得:r=10;
則⊙O的面積為πr2=100π.
點評:本題考查了切線的性質及勾股定理的應用,難度稍大,解題時要理清思路.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學先折出矩形紙片ABCD的對角線AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對角線AC翻折交AD、BC于點F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.


查看答案和解析>>

科目:初中數(shù)學 來源:第25章《圖形的變換》中考題集(30):25.3 軸對稱變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.


查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•益陽)如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.


查看答案和解析>>

同步練習冊答案