【題目】如圖1,AC是邊長為6的菱形ABCD的對角線,∠ABC=∠PAQ60°,∠PAQ繞點(diǎn)A旋轉(zhuǎn),射線AP、AQ分別交邊BCCD于點(diǎn)E、F,連接EF.請?zhí)骄浚?/span>

(1)在旋轉(zhuǎn)過程中,線段AE、AF有怎樣的數(shù)量關(guān)系?并說明理由;

(2)在旋轉(zhuǎn)過程中,△AEF的面積是否存在最小值?若存在,請求出最小值,若不存在,請說明理由

(3)如圖2,將∠PAQ沿著AC向下平移至點(diǎn)A處,使CA′AA′21,在∠PA′Q繞點(diǎn)A′旋轉(zhuǎn)過程中,始終保持∠ABC=∠PA′Q,射線A′P、A′Q分別交直線BC、CD于點(diǎn)EF,連接EF.當(dāng)SA′EFS菱形ABCD1918時(shí),直接寫出線段CE的長.

【答案】(1)AEAF;(2)存在,SAEF的最小值為;(3)滿足條件的EC的值為610

【解析】

(1)結(jié)論:AEAF.只要證明ACE≌△ADF即可解決問題.

(2)證明AEF為等邊三角形,故只有邊長最小時(shí),AEF的面積才最小,當(dāng)APBC時(shí),AE為最。

(3)分兩種情形分別求解即可解決問題:①如圖2中,當(dāng)?shù)?/span>ECB的延長線上時(shí).②如圖3中,當(dāng)點(diǎn)EBC的延長線上時(shí).

解:(1)結(jié)論:AEAF

理由:如圖1中,

∵四邊形ABCD是菱形,

ABBCCDAD

∵∠ABC60°

∴∠ACE=∠ADF60°,

ACAD,

又∵∠PAQ60°

∴∠ACE=∠ADF=∠CAD60°,ACAD,

∴∠CAE=∠DAF

∴△ACE≌△ADF(ASA),

AEAF

(2)存在.

理由:如圖1中,由(1)AEAF,∠PAQ60°

∴△AEF為等邊三角形,

故只有邊長最小時(shí),AEF的面積才最小,

∴當(dāng)APBC時(shí),AE為最小,

AB6,

此時(shí)AE3,則SAEF的最小值為

(3)①如圖2中,當(dāng)?shù)?/span>ECB的延長線上時(shí),作A′HBCH

由題意菱形ABCD的面積=×6218,

SA′EFS菱形ABCD1918,

SAEF19,

∵△A′EF是等邊三角形,

×A′E219

A′E276,

RtA′CH中,∵CA′4,∠A′CH60°

CH×42,A′H2

EH8,

CEEH+CH8+210

②如圖3中,當(dāng)點(diǎn)EBC的延長線上時(shí),作A′HBCH

同法可證EH8,可得ECEHCH826,

綜上所述,滿足條件的EC的值為610

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,等邊△AOB的邊長為6,點(diǎn)C在邊OA上,點(diǎn)D在邊AB上,且OC=3BD,反比例函數(shù)k0)的圖象恰好經(jīng)過點(diǎn)C和點(diǎn)D,則k的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線交于A、B兩點(diǎn),與x軸、y軸分別交于E、F兩點(diǎn),連接OA、OB,若 ,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)揚(yáng)州市某風(fēng)景區(qū)的旅游信息,公司組織一批員工到該風(fēng)景區(qū)旅游,支付給旅行社. 公司參加這次旅游的員工有多少人?

揚(yáng)州市某風(fēng)景區(qū)旅游信息表

旅游人數(shù)

收費(fèi)標(biāo)準(zhǔn)

不超過

人均收費(fèi)

超過

每增加人,人均收費(fèi)降低元,但人均收費(fèi)不低于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知?jiǎng)狱c(diǎn)A在反比例函數(shù)y(x0)的圖象上,直線PQx軸,y軸交于P、Q兩點(diǎn),過點(diǎn)ACDx軸,交y軸于點(diǎn)C,交直線PQ于點(diǎn)D,過點(diǎn)AEBy軸交x軸于點(diǎn)B,交直線PQ于點(diǎn)E,若CEBDCAAE12,QEDP19,則陰影部分的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)過點(diǎn)A34),直線ACx軸交于點(diǎn)C60),過點(diǎn)Cx軸的垂線交反比例函數(shù)圖象于點(diǎn)B

1)求反比例函數(shù)和直線AC的解析式;

2)求ABC的面積;

3)在平面內(nèi)有點(diǎn)D,使得以AB,C,D四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,請直接寫出符合條件的所有D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C上,另兩個(gè)頂點(diǎn)A、B分別在上,則的值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCO的頂點(diǎn)B、C在第二象限,點(diǎn)A(30),反比例函數(shù)y(k0)圖象經(jīng)過點(diǎn)CAB邊的中點(diǎn)D,若∠Bα,則k的值為(  )

A. 4tanαB. 2sinαC. 4cosαD. 2tan

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點(diǎn),點(diǎn)P是拋物線上不與A,B重合的一個(gè)動(dòng)點(diǎn),點(diǎn)Qy軸上的一個(gè)動(dòng)點(diǎn).

1)請直接寫出a,k,b的值及關(guān)于x的不等式ax2kx2的解集;

2)當(dāng)點(diǎn)P在直線AB上方時(shí),請求出△PAB面積的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);

3)是否存在以P,Q,AB為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案