將進(jìn)貨單價為40元的商品按50元售出時,就能賣出500個,已知這個商品每個漲價1元,其銷售量就減少10個.
(1)問:為了賺得8000元的利潤,售價應(yīng)定為多少?這時進(jìn)貨多少個?
(2)當(dāng)定價為多少元時,可獲得最大利潤?
設(shè)售價為x元,總利潤為W元,則W=(x-40)[500-10(x-50)]=-10x2+1400x-40000,
(1)當(dāng)W=8000時,-10x2+1400x-40000=8000,
解得:x1=60,x2=80,
當(dāng)x=60時,進(jìn)貨500-10(60-50)=400(個);
當(dāng)x=80時,進(jìn)貨500-10(80-50)=200(個);

(2)∵-10<0,
∴函數(shù)有最大值,
當(dāng)x=-
1400
2×(-10)
=70時,W最大,
即定價為70元時可獲得最大利潤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A,B兩點(diǎn),A在B的左側(cè),A坐標(biāo)為(-1,0)與y軸交于點(diǎn)C(0,3)△ABC的面積為6.
(1)求拋物線的解析式;
(2)拋物線的對稱軸與直線BC相交于點(diǎn)M,點(diǎn)N為x軸上一點(diǎn),當(dāng)以M,N,B為頂點(diǎn)的三角形與△ABC相似時,請你求出BN的長度;
(3)設(shè)拋物線的頂點(diǎn)為D在線段BC上方的拋物線上是否存在點(diǎn)P使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,拋物線交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3).
(1)求這個拋物線的解析式;
(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使點(diǎn)P到A、C兩點(diǎn)間的距離之和最小.若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)如果在x軸上方平行于x軸的一條直線交拋物線于M,N兩點(diǎn),以MN為直徑作圓恰好與x軸相切,求此圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=-
3
x2-2
3
(a-1)x-
3
(a2-2a)與x軸交于點(diǎn)A(x1,0)、B(x2,0),且x1<1<x2
(1)求A、B兩點(diǎn)的坐標(biāo)(用a表示);
(2)設(shè)拋物線的頂點(diǎn)為C,求△ABC的面積;
(3)若a是整數(shù),P為線段AB上的一個動點(diǎn)(P點(diǎn)與A、B兩點(diǎn)不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點(diǎn)為Q,求拋物線的解析式及線段PQ的長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC內(nèi)接于半徑為4的☉0,過0作BC的垂線,垂足為F,且交☉0于P、Q兩點(diǎn).OD、OE的長分別是拋物線y=x2+2mx+m2-9與x軸的兩個交點(diǎn)的橫坐標(biāo).
(1)求拋物線的解析式;
(2)是否存在直線l,使它經(jīng)過拋物線與x軸的交點(diǎn),并且原點(diǎn)到直線l的距離是2?如果存在,請求出直線l的解析式;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,四邊形ABCD滿足,CDAB,且A、B在x軸上,點(diǎn)D(0,6),若tan∠DAO=2,AB:AO=1:1.
(1)A點(diǎn)坐標(biāo)為(______),B點(diǎn)坐標(biāo)為(______);
(2)求過A、B、D三點(diǎn)的拋物線方程;
(3)若(2)中拋物線過點(diǎn)C,求C點(diǎn)坐標(biāo);
(4)若動點(diǎn)P從點(diǎn)C出發(fā)沿C?B?x正方向,同時Q點(diǎn)從點(diǎn)A出發(fā)沿A?B?C方向(終點(diǎn)C)運(yùn)動,且P、Q兩點(diǎn)運(yùn)動速度分別為
5
個單位/秒,1個單位/秒,若設(shè)運(yùn)動時間為x秒,試探索△BPQ的形狀,并說明相應(yīng)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

有一個拋物線形拱橋,其最大高度為16米,跨度為40米,現(xiàn)把它的示意圖放在如圖所示的平面直角坐標(biāo)系中,則此拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某摩托車生產(chǎn)企業(yè),上年度生產(chǎn)摩托車的投入成本為1萬元/輛,出廠價為1.2萬元/輛,年銷售量為1000輛.本年度為適應(yīng)市場需求,計(jì)劃提高產(chǎn)品檔次,適當(dāng)增加投入成本,若每輛投入成本增加的比例為x(0<x<1),則出廠價相應(yīng)提高的比例為0.75x,同時預(yù)計(jì)年銷售量增加的比例為0.6x.
(1)求本年度預(yù)計(jì)的年利潤y與投入成本增加的比例x的關(guān)系式;
(2)為使本年度的利潤比上一年有所增加,投入成本增加的比例應(yīng)在什么范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,以x軸上一點(diǎn)P(1,0)為圓心的圓與x軸、y軸分別交于A、B、C、D四點(diǎn),點(diǎn)C的坐標(biāo)為(0,
3
).
(1)直接寫出A、B、D三點(diǎn)坐標(biāo);
(2)若拋物線y=x2+bx+c過A、D兩點(diǎn),求這條拋物線的解析式,并判斷點(diǎn)B是否在所求的拋物線上,說明理由.

查看答案和解析>>

同步練習(xí)冊答案