【題目】如圖1,在平面直角坐標(biāo)系內(nèi),ABx軸上兩點(diǎn),以AB為直徑的⊙My軸于CD兩點(diǎn),C的中點(diǎn),弦AEy軸于點(diǎn)F,且點(diǎn)A的坐標(biāo)為(20),CD8

1)求⊙M的半徑;

2)動(dòng)點(diǎn)P在⊙M的圓周上運(yùn)動(dòng).

①如圖1,當(dāng)FP的長(zhǎng)度最大時(shí),點(diǎn)P記為P,在圖1中畫出點(diǎn)P0,并求出點(diǎn)P0橫坐標(biāo)a的值;

②如圖1,當(dāng)EP平分∠AEB時(shí),求EP的長(zhǎng)度;

③如圖2,過點(diǎn)D作⊙M的切線交x軸于點(diǎn)Q,當(dāng)點(diǎn)P與點(diǎn)AB不重合時(shí),請(qǐng)證明為定值.

【答案】1r5;(2)①點(diǎn)P0橫坐標(biāo)a的值等于3+2,②EP7,③

【解析】

1)由垂徑定理可知OD4,連接ODRtOMD中用勾股定理即可求出r

2)①連接FM并延長(zhǎng)交⊙M于點(diǎn)P,FP長(zhǎng)度最大.由已知可得AFCF,由勾股定理求OF,過P點(diǎn)作PHOB,OFM∽△HPM,由相似三角形對(duì)應(yīng)邊成比例可求MH,即可求出P點(diǎn)橫坐標(biāo).

②過P點(diǎn)作PGAE,連接AP、BP.當(dāng)EP平分∠AEB時(shí),可得BAPEGP均為等腰直角三角形,由勾股定理可求PGGE7,進(jìn)而可得EP的長(zhǎng).

③由DQ與⊙MD點(diǎn),可得QMD∽△MDO,又MDMP,可得,進(jìn)而證明QMP∽△PMQ,即可由相似三角形性質(zhì)求解.

1)如圖(1):連接OD,

∵直徑ABCD,CD8,

ODCD4

連接MD設(shè)MDMAr,

RtOMD中.由OM2+OD2MD2,

得(r22+42r2.解得r5,

2)①如圖11),連接FM并延長(zhǎng)交⊙M于點(diǎn)P記作P0,FP長(zhǎng)度最大.

∵直徑ABCD,C的中點(diǎn),

∴∠ACF=∠CAF,

AFCF

RtAFO中,OA2,AFCF4OF,

OF2+22=(4OF2,解得:OF,

MF,

P點(diǎn)作PHOB

∴△OFM∽△HPM,

,

,

MH

∴點(diǎn)P0橫坐標(biāo)a的值等于3+

②如圖12

,

AECD8,

AB是直徑,∴∠AEB90°,

P點(diǎn)作PGAE,連接APBP

當(dāng)EP平分∠AEB時(shí),∠BAP=∠BEP=∠AEP=∠ABP45°,

BAPEGP均為等腰直角三角形,∵AB10,

AP

設(shè)EGPGb,在RtAGP中,PG2+AG2AP2,

即:,

解得:b7b1(舍去).

EPEG

③如圖2:連接PM、DM,

DQ與⊙MD點(diǎn),

∴∠MDQ90°=∠DOM,

∴∠QMD=∠DMO,

∴△QMD∽△MDO,

,

又∵MDMP,

,

又∵∠OMP=∠PMQ

∴△QMP∽△PMQ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】優(yōu)秀傳統(tǒng)文化進(jìn)校園活動(dòng)中,學(xué)校計(jì)劃每周二下午第三節(jié)課時(shí)間開展此項(xiàng)活動(dòng),擬開展活動(dòng)項(xiàng)目為:剪紙,武術(shù),書法,器樂,要求七年級(jí)學(xué)生人人參加,并且每人只能參加其中一項(xiàng)活動(dòng).教務(wù)處在該校七年級(jí)學(xué)生中隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,并對(duì)此進(jìn)行統(tǒng)計(jì),繪制了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).

請(qǐng)解答下列問題:

(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)在參加剪紙活動(dòng)項(xiàng)目的學(xué)生中,男生所占的百分比是多少?

(3)若該校七年級(jí)學(xué)生共有500人,請(qǐng)估計(jì)其中參加書法項(xiàng)目活動(dòng)的有多少人?

(4)學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機(jī)抽取一人了解具體情況,那么正好抽到參加器樂活動(dòng)項(xiàng)目的女生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以OA的長(zhǎng)為半徑的圓OAD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE

1)判斷直線CE⊙O的位置關(guān)系,并證明你的結(jié)論;

2)若tan∠ACB=,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)DAB的延長(zhǎng)線上,點(diǎn)CO上,CACD,∠CDA30°.

1)試判斷直線CDO的位置關(guān)系,并說明理由;

2)若O的半徑為4,

用尺規(guī)作出點(diǎn)ACD所在直線的距離;

求出該距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生參加戶外活動(dòng)的情況,某市教育行政部門對(duì)部分學(xué)生參加戶外活動(dòng)的時(shí)間進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問題:

1)這次抽樣共調(diào)查了  名學(xué)生,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)計(jì)算扇形統(tǒng)計(jì)圖中表示戶外活動(dòng)時(shí)間0.5小時(shí)的扇形圓心角度數(shù);

3)求出本次調(diào)查學(xué)生參加戶外活動(dòng)的平均時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的周長(zhǎng)是18 cm,其對(duì)角線AC,BD相交于點(diǎn)O,過點(diǎn)O的直線分別與AD,BC相交于點(diǎn)E,F,且OE=2 cm,則四邊形CDEF的周長(zhǎng)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,在四邊形ABCD中,ABDC,EBC的中點(diǎn),若AEBAD的平分線,則AB,AD,DC之間的數(shù)量關(guān)系為_______

2)問題探究:如圖2,在四邊形ABCD中,ABDC,EBC的中點(diǎn),點(diǎn)FDC的延長(zhǎng)線上一點(diǎn),若AEBAF的平分線,試探究AB,AF,CF之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)問題解決:如圖3,ABCD,點(diǎn)E在線段BC上,且BE:EC=3:4.點(diǎn)F在線段AE上,且EFD =∠EAB,直接寫出ABDF,CD之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC為矩形ABCD的對(duì)角線,將邊AB沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)M處,將邊CD沿CF折疊,使點(diǎn)D落在AC上的點(diǎn)N處.

1)求證:四邊形AECF是平行四邊形;

2)當(dāng)∠BAE為多少度時(shí),四邊形AECF是菱形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對(duì)飲水品質(zhì)的需求越來越高.孝感市槐蔭公司根據(jù)市場(chǎng)需求代理、兩種型號(hào)的凈水器,每臺(tái)型凈水器比每臺(tái)型凈水器進(jìn)價(jià)多200元,用5萬元購(gòu)進(jìn)型凈水器與用4.5萬元購(gòu)進(jìn)型凈水器的數(shù)量相等.

(1)求每臺(tái)型、型凈水器的進(jìn)價(jià)各是多少元;

(2)槐蔭公司計(jì)劃購(gòu)進(jìn)兩種型號(hào)的凈水器共50臺(tái)進(jìn)行試銷,其中型凈水器為臺(tái),購(gòu)買資金不超過9.8萬元.試銷時(shí)型凈水器每臺(tái)售價(jià)2500元,型凈水器每臺(tái)售價(jià)2180元.槐蔭公司決定從銷售型凈水器的利潤(rùn)中按每臺(tái)捐獻(xiàn)元作為公司幫扶貧困村飲水改造資金,設(shè)槐蔭公司售完50臺(tái)凈水器并捐獻(xiàn)扶貧資金后獲得的利潤(rùn)為,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案