如圖,等腰直角△ABC的直角邊長為3,P為斜邊BC上一點,且BP=1,D為AC上一點,若∠APD=45°,則CD的長為   
【答案】分析:求出BC長,求出∠APB=∠PDC,∠B=∠C,證△APB∽△PDC,得出=,代入求出即可.
解答:解:∵△ABC是等腰直角三角形,直角邊AB=AC=3,
∴由勾股定理得:BC=3,
∠C=∠B=45°,
∴∠PDC+∠DPC=135°,
∵∠APD=45°,
∴∠APB+∠DPC=135°,
∴∠APB=∠PDC,
∵∠B=∠C,
∴△APB∽△PDC,
=,
=,
CD=,
故答案為:
點評:本題考查了等腰直角三角形性質,勾股定理,相似三角形的性質和判定等知識點的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,等腰直角三角形AOB的面積為S1,以點O為圓心,OA為半徑的弧與以AB為直徑的半圓圍成的圖形的面積為S2,則S1與S2的關系是( 。
A、S1>S2B、S1<S2C、S1=S2D、S1≥S2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,等腰直角三角形ABC中,∠C=90°,AD為∠CAB的平分線,DE⊥AB于E,AC=4,則△BDE的周長為( 。
A、4
B、6
C、4
2
D、4
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鎮(zhèn)江模擬)如圖,等腰直角三角形ABC中,AC=BC>3,點M在AC上,點N在CB的延長線上,MN交AB于點O,且AM=BN=3,則S△AMO與S△BNO的差是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰直角△ABC中,∠ABC=90°,點D在AC上,將△ABD繞頂點B沿順時針方向旋90°后得到△CBE.
(1)求∠DCE的度數(shù);
(2)當AB=10,AD:DC=2:3時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰直角三角形△ABC中,∠ACB=90°,點D是BC的中點,CE⊥AD于點F交AB于點E,CH是AB上的高交AD于點G.
(1)找出圖中的全等三角形;
(2)找出與∠ADC相等的角,并請說明理由.

查看答案和解析>>

同步練習冊答案