如圖:直線a,b都垂直于直線l,且∠1=(2x)°,∠2=(3x+y)°,∠3=(2 y-x)°,則∠1的度數(shù)為________.

40°
分析:根據(jù)已知得,∠2=∠3,由圖可得∠1+∠2=180°,列出方程組,求得x與y的值,進(jìn)而求出∠1的度數(shù).
解答:∵直線a,b都垂直于直線l,
∴a∥b,
∴∠2=∠3,
∵∠1+∠2=180°,
,
解得x=20,
∴∠1的度數(shù)為40°.
點(diǎn)評(píng):本題考查平行線的判定與性質(zhì),正確識(shí)別“三線八角”中的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是正確答題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

29、先閱讀理解兩條正確結(jié)論,并用這兩條結(jié)論完成應(yīng)用與探究.閱讀:
正確結(jié)論1.在圖甲△ABC中,如果D是AB的中點(diǎn),DE∥BC交AC于點(diǎn)E,那么E也是AC的中點(diǎn),及DE是中位線.
正確結(jié)論2.在圖乙梯形ABCD中,如果E為腰AB的中點(diǎn)且EF∥AD∥BC.那么F也是CD的中點(diǎn),及EF是中位線.
應(yīng)用:如圖丙,已知,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB′+DD′.
探究:如圖丁,若直線MN向上移動(dòng),使點(diǎn)C在直線一側(cè),A、B、D三點(diǎn)在直線另一側(cè),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?先對(duì)結(jié)論進(jìn)行猜想,然后加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.對(duì)角線AC與BD相交于O點(diǎn),O′是B′D′的中點(diǎn).
(1)求證:OO′是梯形AA′C′C的中位線.
(2)求證:AA′+CC′=BB′+DD′.
(3)若直線MN向上移動(dòng),使點(diǎn)C在直線一側(cè),A、B、D在直線另一側(cè)(如圖乙),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?寫出你的猜想并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知,如圖甲,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB''+DD′.
(2)若直線MN向上移動(dòng),使點(diǎn)C在直線一側(cè),A、B、D三點(diǎn)在直線另一側(cè)(如圖乙),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?先對(duì)結(jié)論進(jìn)行猜想,然后加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,把水渠中的水引到水池C,先過C點(diǎn)向渠岸AB畫垂線,垂足為D,再沿垂線CD開溝才能使溝最短,其依據(jù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)已知,如圖甲,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB''+DD′.
(2)若直線MN向上移動(dòng),使點(diǎn)C在直線一側(cè),A、B、D三點(diǎn)在直線另一側(cè)(如圖乙),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?先對(duì)結(jié)論進(jìn)行猜想,然后加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案