【題目】已知等邊△ABC,DBC上一點,E是平面上一點,且DEAD,∠ADE60°,連接CE

1)當(dāng)點D是線段BC的中點時,如圖1.判斷線段BDCE的數(shù)量關(guān)系,并說明理由;

2)當(dāng)點D是線段BC上任意一點時,如圖2.請找出線段AB,CE,CD三者之間的數(shù)量關(guān)系,并說明理由;

3)當(dāng)點D在線段BC的延長線上時,如圖3,若△ABC邊長為6,設(shè)CDx,則線段CE   (用含x的代數(shù)式表示).

【答案】1BDCE,理由見解析;(2ABCE+CD,理由見解析;(3x+6

【解析】

1)連接AE,根據(jù)等邊三角形的判定定理得到△ADE是等邊三角形,根據(jù)等腰三角形的性質(zhì)得到AD平分∠BAC,得到AC垂直平分DE,根據(jù)線段垂直平分線的定義證明結(jié)論;

2)連接AE,證明△ABD≌△ACE,根據(jù)全等三角形的對應(yīng)邊相等解答;

3)連接AE,證明△ABD≌△ACE,根據(jù)全等三角形的對應(yīng)邊相等得到BDCE,代入計算得到答案.

1BDCE,

證明:如圖1,連接AE,

DEAD,∠ADE60°

∴△ADE是等邊三角形,

∴∠DAE60°,

∵△ABC是等邊三角形,DBC的中點,

AD平分∠BAC,

∴∠DAC30°,

∵∠DAE60°,

AC平分∠DAE

∵△ADE是等邊三角形,

AC垂直平分DE,

CECD,

BDCD,

CEBD;

2ABCE+CD,

證明:如圖2,連接AE,

DEAD,∠ADE60°

∴△ADE是等邊三角形,

ADAE,∠DAE60°

∵△ABC是等邊三角形,

ABAC,∠BAC60°,

∴∠BAC﹣∠DAC=∠DAE﹣∠DAC

∴∠BAD=∠CAE,

在△ABD和△ACE中,

∴△ABD≌△ACESAS

BDCE,

ABBCBD+CDCE+CD;

3)如圖3,連接AE,

DEAD,∠ADE60°,

∴△ADE是等邊三角形,

ADAE,∠DAE60°,

∵△ABC是等邊三角形,

ABAC,∠BAC60°,

∴∠BAC+DAC=∠DAE+DAC,

∴∠BAD=∠CAE

在△ABD和△ACE中,

,

∴△ABD≌△ACESAS

BDCE,

CEBDBC+CDx+6

故答案為:x+6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實中央的“強基惠民工程”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的15倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨完成還需5天.

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C90°,ACBC,AD平分∠CAB,交BC于點DDEAB于點E,且AB6cm,則△DEB的周長為( 。

A.4cmB.6cmC.8cmD.以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地.兩人之間的距離y(米)與時間t(分鐘)之間的函數(shù)關(guān)系如圖所示.

(1)根據(jù)圖象信息,當(dāng)t=________分鐘時甲乙兩人相遇,甲的速度為________/分鐘;

(2)求出線段AB所表示的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F(xiàn)是正方形ABCD外接圓上的兩個點,且EC∥BF,ADBF的延長線交于點P.

(1)∠EBF的度數(shù);

(2)求證:BPBE=AB2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)為了解孩子們對《地理中國》 《最強大腦》 《挑戰(zhàn)不可能》 《超級演說家》 《中國詩詞大會》五種電視節(jié)目的喜愛程度,隨機在七、八、九年級抽取了部分學(xué)生進行調(diào)查(每人只能選擇一種喜愛的電視節(jié)目),并將獲得的數(shù)據(jù)進行整理,繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)本次調(diào)查共抽取了_________________名學(xué)生。

2)補全條形統(tǒng)計圖。

3)在扇形統(tǒng)計圖中,喜愛《地理中國》節(jié)目的人數(shù)所在的扇形的圓心角是__________度。

4)若該校有1500名學(xué)生,請估計喜愛《最強大腦》節(jié)目的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,以點C(2,)為圓心,以2為半徑的圓與x軸交于A,B兩點.

(1)求A,B兩點的坐標(biāo);

(2)若二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A,B,試確定此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織了一次環(huán)保知識競賽,每班選25名同學(xué)參加比賽,成績分別為A、B、C、D四個等級,其中相應(yīng)等級的得分依次記為100分、90分、80分、70分,學(xué)校將某年級的一班和二班的成績整理并繪制成統(tǒng)計圖,試根據(jù)以上提供的信息解答下列問題:

1)把一班競賽成績統(tǒng)計圖補充完整;

2)根據(jù)下表填空:a   b   c   ;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

一班

a

b

90

二班

876

80

c

3)請從平均數(shù)和中位數(shù)或眾數(shù)中任選兩個對這次競賽成績的結(jié)果進行分析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.

(1)求一次至少購買多少只計算器,才能以最低價購買?

(2)求寫出該文具店一次銷售x(x10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當(dāng)10x50時,為了獲得最大利潤,店家一次應(yīng)賣多少只?這時的售價是多少?

查看答案和解析>>

同步練習(xí)冊答案