【題目】將正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如圖所示方式放置,點(diǎn)A1,A2,A3,和點(diǎn)C1C2C3,分別在直線x軸上,則點(diǎn)B2019的橫坐標(biāo)是______.

【答案】.

【解析】

利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及正方形的性質(zhì)可得出點(diǎn)B1,B2,B3,B4B5的坐標(biāo),根據(jù)點(diǎn)的坐標(biāo)的變化可找出變化規(guī)律點(diǎn)Bn的坐標(biāo)為(2n-1,2n-1)(n為正整數(shù)),再代入n=2019即可得出結(jié)論.

當(dāng)x=0時(shí),y=x+1=1,

∴點(diǎn)A1的坐標(biāo)為(0,1).

∵四邊形A1B1C1O為正方形,

∴點(diǎn)B1的坐標(biāo)為(1,1),點(diǎn)C1的坐標(biāo)為(1,0).

當(dāng)x=1時(shí),y=x+1=2,

∴點(diǎn)A1的坐標(biāo)為(1,2).

A2B2C2C1為正方形,

∴點(diǎn)B2的坐標(biāo)為(3,2),點(diǎn)C2的坐標(biāo)為(30).

同理,可知:點(diǎn)B3的坐標(biāo)為(7,4),點(diǎn)B4的坐標(biāo)為(15,8),點(diǎn)B5的坐標(biāo)為(3116),,

∴點(diǎn)Bn的坐標(biāo)為(2n-1,2n-1)(n為正整數(shù)),

∴點(diǎn)B2019的坐標(biāo)為(22019-1,22018).

故答案為:22019-1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:若AB、C為數(shù)軸上三點(diǎn),若點(diǎn)CA的距離是點(diǎn)CB的距離2倍,我們就稱點(diǎn)C是(A,B)的好點(diǎn)

例如,如圖1,點(diǎn)A表示的數(shù)為-1,點(diǎn)B表示的數(shù)為2.表示1的點(diǎn)C到點(diǎn)A的距離是2,到點(diǎn)B的距離是1,那么點(diǎn)C是(AB)的好點(diǎn);

又如,表示0的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是2,那么點(diǎn)D不是A,B)的好點(diǎn),但點(diǎn)D是(B,A)的好點(diǎn).

知識(shí)運(yùn)用:

如圖1,點(diǎn)B是(DC)的好點(diǎn)嗎? (填是或不是);

如圖2,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為-40,點(diǎn)B所表示的數(shù)為20.現(xiàn)有一只電子螞蟻P從點(diǎn)B出發(fā),以2個(gè)單位每秒的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)A停止.當(dāng)t為何值時(shí),P、AB中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】釣魚(yú)島自古就是中國(guó)的!2017年5月18日,中國(guó)海警2305,2308,2166,33115艦船隊(duì)在中國(guó)的釣魚(yú)島領(lǐng)海內(nèi)巡航,如圖,我軍以30km/h的速度在釣魚(yú)島A附近進(jìn)行合法巡邏,當(dāng)巡邏艦行駛到B處時(shí),戰(zhàn)士發(fā)現(xiàn)A在他的東北方向,巡邏艦繼續(xù)向北航行40分鐘后到達(dá)點(diǎn)C,發(fā)現(xiàn)A在他的東偏北15°方向,求此時(shí)巡邏艦與釣魚(yú)島的距離(≈1.414,結(jié)果精確到0.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】深圳市教育局在全市中小學(xué)開(kāi)展“四點(diǎn)半活動(dòng)”試點(diǎn)工作,某校為了了解學(xué)生參與“四點(diǎn)半活動(dòng)”項(xiàng)目的情況,對(duì)初中的部分學(xué)生進(jìn)行了隨機(jī)調(diào)查,調(diào)查項(xiàng)目分為“科技創(chuàng)新”類,“體育活動(dòng)”類,“藝術(shù)表演”類,“植物種植”類及“其它”類共五大類別,并根據(jù)調(diào)查的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下面的問(wèn)題.

(1)請(qǐng)求出此次被調(diào)查學(xué)生的總?cè)藬?shù)   人;

(2)根據(jù)以上信息,補(bǔ)全頻數(shù)分布直方圖;

(3)求出扇形統(tǒng)計(jì)圖中,“體育活動(dòng)”α的圓心角等于   度;

(4)如果本校初中部有1800名學(xué)生,請(qǐng)估計(jì)參與“藝術(shù)表演”類項(xiàng)目的學(xué)生大約多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.

1)圖②中的陰影部分的面積為   

2)觀察圖②,三個(gè)代數(shù)式(m+n2,(mn2mn之間的等量關(guān)系是   

3)若x+y=﹣6,xy,則xy   

4)觀察圖③,你能得到怎樣的代數(shù)恒等式呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x+c(c0)的圖象與x軸交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于點(diǎn)C,且OB=OC.

(Ⅰ)求該拋物線的解析式和頂點(diǎn)坐標(biāo);

(Ⅱ)直線l是拋物線的對(duì)稱軸,E是拋物線的頂點(diǎn),連接BE,線段OC上的點(diǎn)F關(guān)于直線l的對(duì)稱點(diǎn)F′恰好在線段BE上,求點(diǎn)F的坐標(biāo);

(Ⅲ)若有動(dòng)點(diǎn)P在線段OB上,過(guò)點(diǎn)Px軸的垂線分別與BC交于點(diǎn)M,與拋物線交于點(diǎn)N,試問(wèn):拋物線上是否存在點(diǎn)Q,使得△PQN與△APM的面積相等,且線段NQ的長(zhǎng)度最小?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形紙片ABCD的邊長(zhǎng)為,對(duì)角線相交于點(diǎn)O,第1次將紙片折疊,使點(diǎn)A與點(diǎn)O重合,折痕與AO交于點(diǎn)P1;設(shè)P1O的中點(diǎn)為O1,第2次將紙片折疊,使點(diǎn)A與點(diǎn)O1重合,折痕與AO交于點(diǎn)P2;設(shè)P2O1的中點(diǎn)為O2,第3次將紙片折疊,使點(diǎn)A與點(diǎn)O2重合,折痕與AO交于點(diǎn)P3;…;設(shè)Pn-1On-2的中點(diǎn)為On-1,第n次將紙片折疊,使點(diǎn)A與點(diǎn)On-1重合,折痕與AO交于點(diǎn)Pn(n>2),則APn的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王華、張偉兩位同學(xué)分別將自己10次數(shù)學(xué)自我檢測(cè)的成績(jī)繪制成如下統(tǒng)計(jì)圖:

1)根據(jù)上圖中提供的數(shù)據(jù)列出如下統(tǒng)計(jì)表:

平均成績(jī)(分)

中位數(shù)(分)

眾數(shù)(分)

方差(S2

王華

80

b

80

d

張偉

a

85

c

260

a= b= ,c= d= ,

2)將90分以上(含90分)的成績(jī)視為優(yōu)秀,則優(yōu)秀率高的是 .

3)現(xiàn)在要從這兩個(gè)同學(xué)選一位去參加數(shù)學(xué)競(jìng)賽,你可以根據(jù)以上的數(shù)據(jù)給老師哪些建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】世界衛(wèi)生組織預(yù)計(jì):到2025年,全世界將會(huì)有一半人面臨用水危機(jī),為了倡導(dǎo)節(jié)約用水,從我做起,某縣政府決定對(duì)縣直屬機(jī)關(guān)300戶家庭一年的月平均用水量進(jìn)行調(diào)查,調(diào)查小組抽查了部分家庭月平均用水量(單位:噸),繪制條形圖和扇形圖如圖所示.

(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)這些家庭月平均用水量數(shù)據(jù)的平均數(shù)是_______,眾數(shù)是______,中位數(shù)是_______;

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該縣直屬機(jī)關(guān)300戶家庭的月平均用水量不超過(guò)12噸的約有多少戶.

查看答案和解析>>

同步練習(xí)冊(cè)答案