【題目】有這樣一道習(xí)題:如圖1,已知OAOB是⊙O的半徑,并且OAOBPOA上任一點(diǎn)(不與O、A重合)BP的延長(zhǎng)線交⊙OQ,過(guò)Q點(diǎn)作⊙O的切線交OA的延長(zhǎng)線于R.

1)證明:RP=RQ

2)請(qǐng)?zhí)骄肯铝凶兓?/span>

A、變化一:交換題設(shè)與結(jié)論.已知:如圖1,OAOB是⊙O的半徑,并且OAOB,POA上任一點(diǎn)(不與OA重合),BP的延長(zhǎng)線交⊙OQROA的延長(zhǎng)線上一點(diǎn),且RP=RQ.證明:RQ為⊙O的切線.

  

B、變化二:運(yùn)動(dòng)探求. ①如圖2,若OA向上平移,變化一中結(jié)論還成立嗎?(只交待判斷) 答:_________.

②如圖3,如果POA的延長(zhǎng)線上時(shí),BP交⊙OQ,過(guò)點(diǎn)Q作⊙O的切線交OA的延長(zhǎng)線于R,原題中的結(jié)論還成立嗎?為什么?

【答案】1)證明見(jiàn)解析;

2變化一:證明見(jiàn)解析;變化二①結(jié)論成立;②結(jié)論成立,理由見(jiàn)解析.

【解析】試題分析:(1)首先連接OQ,由切線的性質(zhì),可得∠OQB+∠BQR=90°,又由OA⊥OB,可得∠OPB+∠B=90°,繼而可證得∠PQR=∠BPO=∠RPQ,則可證得RP=RQ,

(2)A、變化一,連接OQ, 證明∠OQR=90°即可;

B、變化二:若OA向上平移,變化一中的結(jié)論還成立,證明思路同變化一;

②如果P在OA的延長(zhǎng)線上時(shí),BP交⊙O于Q,過(guò)點(diǎn)Q作⊙O的切線交OA的延長(zhǎng)線于R,原題中的結(jié)論還成立,連接OQ,證明思路同(1);

試題解析:(1)連接OQ,

∵OQ=OB,∴∠OBP=∠OQP,

∵QR⊙O的切線,

∴OQ⊥QR,

∠OQP+∠PQR=90°,

∠OBP+∠OPB=90°,

∠PQR=∠OPB,

∵∠OPB∠QPR為對(duì)頂角,

∴∠OPB=∠QPR,∴∠PQR=∠QPR

∴RP=RQ;

變化一、連接OQ,

∵RP=RQ,

∴∠PQR=∠QPR=∠BPO,

又∵OB=OQ,OA⊥OB,

∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,

∴∠OQB+∠PQR=90°,

即∠OQR=90°,

∴RQ為⊙O的切線;

變化二、(1)結(jié)論成立 ,

連接OQ,

∵RP=RQ,

∴∠PQR=∠QPR=∠BPM,

又∵OB=OQ,RP⊥OB,

∴∠OQB=∠OBQ,∠OBQ+∠BPM=90°,

∴∠OQB+∠PQR=90°,

即∠OQR=90°,

∴RQ為⊙O的切線;

(2)結(jié)論成立,

連接OQ,

∵RQ是⊙O的切線,

∴OQ⊥QR,

∴∠OQB+∠PQR=90°,

∵OA⊥OB,

∴∠OPB+∠B=90°,

又∵OB=OQ,

∴∠OQB=∠B,

∴∠PQR=∠BPO=∠RPQ,

∴RP=RQ.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達(dá)C地的過(guò)程中,甲、乙兩車各自與C地的距離ykm)與甲車行駛時(shí)間th)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車出發(fā)2h時(shí),兩車相遇;②乙車出發(fā)1.5h時(shí),兩車相距170km;③乙車出發(fā)h時(shí),兩車相遇;④甲車到達(dá)C地時(shí),兩車相距40km.其中正確的是______(填寫所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA=OB=OC=6,過(guò)點(diǎn)A的直線ADBC于點(diǎn)D,y軸與點(diǎn)G,ABD的面積為△ABC面積的.

(1)求點(diǎn)D的坐標(biāo);

(2)過(guò)點(diǎn)CCEAD,交AB交于F,垂足為E.

①求證:OF=OG;

②求點(diǎn)F的坐標(biāo)。

(3)(2)的條件下,在第一象限內(nèi)是否存在點(diǎn)P,使△CFP為等腰直角三角形?若存在,直接寫出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一塊破損的木板.

(1)請(qǐng)你設(shè)計(jì)一種方案,檢驗(yàn)?zāi)景宓膬蓷l直線邊緣 AB、CD 是否平行;

(2)AB∥CD,連接 BC,過(guò)點(diǎn) A AM⊥BC M,垂足為 M,畫(huà)出圖形,并寫出∠BCD 與∠BAM 的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=-2x與直線ykxb相交于點(diǎn)A(a,2),并且直線ykxb經(jīng)過(guò)x軸上點(diǎn)B(2,0)

(1)求直線ykxb的解析式;

(2)求兩條直線與y軸圍成的三角形面積;

(3)直接寫出不等式(k2)xb≥0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)E在正方形ABCD的邊AB上,以BE為邊向正方形ABCD外部作正方形BEFG,連接DF,M、N分別是DC、DF的中點(diǎn),連接MN.AB=7BE=5,則MN=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,AM∥CN,點(diǎn) B 為平面內(nèi)一點(diǎn),AB⊥BC B,過(guò) B BD⊥ AM.

(1)求證:∠ABD=∠C;

(2)如圖 2,在(1)問(wèn)的條件下,分別作∠ABD、∠DBC 的平分線交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,

①求證:∠ABF=∠AFB;

②求∠CBE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等邊三角形,旋轉(zhuǎn)后能與重合.

1)旋轉(zhuǎn)中心是哪一點(diǎn)?

2)旋轉(zhuǎn)角度是多少度?

3)連結(jié)后,是什么三角形?簡(jiǎn)單說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABCD,ABE與∠CDE兩個(gè)角的角平分線相交于點(diǎn)F,

(1)如圖1,若∠E=80°,求∠BFD的度數(shù).

(2)如圖2,若∠ABM=ABF,CDM=CDF,試寫出∠M與∠E之間的數(shù)量關(guān)系并證明你的結(jié)論.

(3)若∠ABM=ABF,CDM=CDF,E=m°,請(qǐng)直接用含有n,m°的代數(shù)式表示出∠M.

查看答案和解析>>

同步練習(xí)冊(cè)答案