【題目】已知二次函數(shù)y=x2+bx+c的圖象經過點(4,3),(3,0).
(1)求b、c的值;
(2)求出該二次函數(shù)圖象的頂點坐標和對稱軸,并在所給坐標系中畫出該函數(shù)的圖象;
(3)該函數(shù)的圖象經過怎樣的平移得到y=x2的圖象?
【答案】(1)b=-4,c=3;(2)頂點坐標為(2,﹣1),對稱軸是直線x=2,圖象見解析;(3)將該函數(shù)的圖象向左平移2個單位,再向上平移1個單位得到y=x2的圖象.
【解析】試題分析:(1)根據(jù)題意,將點(4,3),(3,0)分別代入二次函數(shù)解析式中,得二元一次方程組求解即可。
(2)由(1)可得二次函數(shù)解析式,將二次函數(shù)解析式化為頂點式即可。
(3)根據(jù)二次函數(shù)的頂點、對稱軸、以及所過的點畫出圖象即可。
解:(1)將(4,3),(3,0)代入y=x2+bx+c,得,解得:,
(2)二次函數(shù)y=x2﹣4x+3=(x﹣2)2﹣1,
則頂點坐標為(2,﹣1),對稱軸是直線x=2,
如圖,
(3)將該函數(shù)的圖象向左平移2個單位,再向上平移1個單位得到y=x2的圖象.
點睛:本題是二次函數(shù)綜合題,熟練掌握待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)一般式與頂點式的轉化,二次函數(shù)的圖像變化是解答本題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.
解:∵∠1+∠EFD=180°(鄰補角定義),∠1+∠2=180°(已知 )
∴ (同角的補角相等)①
∴ (內錯角相等,兩直線平行)②
∴∠ADE=∠3( )③
∵∠3=∠B( )④
∴ (等量代換)⑤
∴DE∥BC( )⑥
∴∠AED=∠C( )⑦
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個轉盤被分成6個相等的扇形,顏色分為紅、綠、黃三種,指針的位置固定,轉動轉盤后任其自由停止,其中的某個扇形會恰好停在指針所指的位置(指針指向兩個扇形的交線時,重新轉動).下列事件:①指針指向紅色;②指針指向綠色;(③指針指向黃色;④指針不指向黃色,估計各事件的可能性大小,完成下列問題.
(1)④事件發(fā)生的可能性大小是 ;
(2)多次實驗,指針指向綠色的頻率的估計值是 ;
(3)將這些事件的序號按發(fā)生的可能性從小到大的順序排列為: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網店銷售一種成本價為每件60元的商品,規(guī)定銷售期間銷售單價不低于成本價,且每件獲利不得高于成本價的45%.經測算,每天的銷售量y(件)與銷售單價x(元)的關系符合一次函數(shù)y=﹣x+120,設該網店每天銷售該商品所獲利潤為W(元).
(1)試寫出利潤W與銷售單價x之間的函數(shù)關系式;
(2)銷售單價定為多少元時,該網店每天銷售該商品可獲得最大利潤,最大利潤是多少元?
(3)若該網店每天銷售該商品所獲利潤不低于500元,請直接寫出銷售單價x的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:直線EF分別與直線AB,CD相交于點F,E,EM平分∠FED,AB∥CD,H,P分別為直線AB和線段EF上的點。
(1)如圖1,HM平分∠BHP,若HP⊥EF,求∠M的度數(shù)。
(2)如圖2,EN平分∠HEF交AB于點N,NQ⊥EM于點Q,當H在直線AB上運動(不與點F重合)時,探究∠FHE與∠ENQ的關系,并證明你的結論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一張桌子可坐6人,按下列方式將桌子拼在一起.
①2張桌子拼在一起可坐_____人,4張桌子拼在一起可坐_______人,張桌子拼在一起可坐(_____________)人.
②一家餐廳有40張這樣的長方形桌子,按照上圖方式每5張拼成一張大桌子,則40張桌子可拼成8張大桌子,共可坐__________人.
③若在②中,改成8張桌子拼成一張大桌子,則共可坐________人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為1,直線CD經過圓心O,交⊙O于C、D兩點,直徑AB⊥CD,點M是直線CD上異于點C、O、D的一個動點,AM所在的直線交于⊙O于點N,點P是直線CD上另一點,且PM=PN.
(1)當點M在⊙O內部,如圖一,試判斷PN與⊙O的關系,并寫出證明過程;
(2)當點M在⊙O外部,如圖二,其它條件不變時,(1)的結論是否還成立?請說明理由;
(3)當點M在⊙O外部,如圖三,∠AMO=15°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經過平移得到的△A′B′C′,△ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4)。
(1)請在圖中作出△A′B′C′;(2)寫出點A′、B′、C′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于A、B兩點,與y軸交于C點,且對稱軸為直線x=1,點B坐標為(-1,0).則下面的四個結論:①2a+b=0;②4a-2b+c<0;③ac>0;④當y<0時,x<-1或x>3.其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com