(探究題)利用如圖所示的轉(zhuǎn)盤做游戲,自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,每次將得到的數(shù)字立刻填在的表格中.

如果第二次分別轉(zhuǎn)出了下面的數(shù),你會(huì)將它們填在哪個(gè)空格中?

(1)0,(2)9,(3)3.

答案:
解析:

  解:(1)個(gè)位.(2)千位.(3)由于“3”數(shù)字較小,以后出現(xiàn)比“3”大的數(shù)的可能性較大,故“3”可放在較低的位置上.此題答案不唯一.

  精析:由于游戲是轉(zhuǎn)出一數(shù)填一數(shù),無法預(yù)估下面數(shù)的大。虼艘M量使“較大的數(shù)放在較大數(shù)位上”.而“9”和“0”都是極端數(shù)字,沒有比“9”更大和比“0”更小的數(shù)字了,只要遇到,直接放在最高位和最低位上.


提示:

(1)要使數(shù)字最大,就要遵循“大數(shù)填大數(shù)位,小數(shù)填小數(shù)位”.

(2)如果轉(zhuǎn)到“9”,一定往最高位填,轉(zhuǎn)到“0”,無需考慮,填在個(gè)位.如果遇到中間數(shù),視情況而定.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課上,張老師給出了問題:
如圖(1),△ABC為等邊三角形,動(dòng)點(diǎn)D在邊CA上,動(dòng)點(diǎn)P邊BC上,若這兩點(diǎn)分別從C、B點(diǎn)同時(shí)出發(fā),以相同的速度由C向A和由B向C運(yùn)動(dòng),連接AP,BD交于點(diǎn)Q,兩點(diǎn)運(yùn)動(dòng)過程中AP=BD成立嗎?請(qǐng)證明你的結(jié)論;
經(jīng)過思考,小明展示了一種正確的解題思路:由△ABP≌△BCD,從而得出AP=BD.
在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步探究:
(1)小穎提出:如果把原題中“動(dòng)點(diǎn)D在邊CA上,動(dòng)點(diǎn)P邊BC上,”改為“動(dòng)點(diǎn)D,P在射線CA和射線BC上運(yùn)動(dòng)”,其他條件不變,如圖(2)所示,兩點(diǎn)運(yùn)動(dòng)過程中∠BQP的大小保持不變.請(qǐng)你利用圖(2)的情形,求證:∠BQP=60°;
(2)小華提出:如果把原題中“動(dòng)點(diǎn)P在邊BC上”改為“動(dòng)點(diǎn)P在AB的延長(zhǎng)線上運(yùn)動(dòng),連接PD交BC于E”,其他條件不變,如圖(3),則動(dòng)點(diǎn)D,P在運(yùn)動(dòng)過程中,DE始終等于PE.你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個(gè)正方形DEFG,使正方形的一條邊DE落在BC上,頂點(diǎn)F、G分別落在AC、AB上.
Ⅰ、證明:△BDG≌△CEF;
Ⅱ、探究:怎樣在鐵片上準(zhǔn)確地畫出正方形.
小聰和小明各給出了一種想法,請(qǐng)你在Ⅱa和Ⅱb的兩個(gè)問題中選擇一個(gè)你喜歡的問題解答.如果兩題都解,只以Ⅱa的解答記分.
Ⅱa、小聰想:要畫出正方形DEFG,只要能計(jì)算出正方形的邊長(zhǎng)就能求出BD和CE的長(zhǎng),從而確定D點(diǎn)和E點(diǎn),再畫正方形DEFG就容易了.
設(shè)△ABC的邊長(zhǎng)為2,請(qǐng)你幫小聰求出正方形的邊長(zhǎng).(結(jié)果用含根號(hào)的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的邊長(zhǎng)也能畫出正方形.具體作法是:
①在AB邊上任取一點(diǎn)G′,如圖作正方形G′D′E′F′;
②連接BF′并延長(zhǎng)交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四精英家教網(wǎng)邊形DEFG即為所求.
你認(rèn)為小明的作法正確嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•響水縣一模)探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在何種數(shù)量關(guān)系呢?

已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個(gè)外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.
探究二:三角形的一個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?
已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.
探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF(圖4)呢?
請(qǐng)直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關(guān)系:
∠P=
1
2
(∠A+∠B+∠E+∠F)-180°
∠P=
1
2
(∠A+∠B+∠E+∠F)-180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為
5
10
、
13
,求這個(gè)三角形的面積.小華同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
3.5
3.5

(2)若△DEF三邊的長(zhǎng)分別為
5
8
、
17
,請(qǐng)?jiān)趫D2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積為
3
3

(3)如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(4)如圖4,一個(gè)六邊形的花壇被分割成7個(gè)部分,其中正方形PRBA,RQDC,QPFE的面積分別為13m2、25m2、36m2,則六邊形花壇ABCDEF的面積是
110
110
m2

查看答案和解析>>

同步練習(xí)冊(cè)答案