分析 (1)連接ED,可得ED為三角形ABC的中位線,利用中位線定理得到ED與AB平行,且等于AB的一半,進(jìn)而得到三角形EOD與三角形AOB相似,且相似比為1:2,即可得證;
(2)設(shè)ED與CF交于點(diǎn)G,由三角形GOD與三角形AFO相似,由相似得比例,再由DG與AB平行,得比例,確定出AF=BF,即可得證;
(3)由∠A為直角,得到四邊形AFDE為矩形,可得出三角形EDK與三角形BAE相似,再由三角形EDK與三角形CAB相似,得到三角形BAE與三角形CAB相似,由相似得比例,求出所求之比即可.
解答 (1)證明:連接ED,
∵E、D分別為AC、BC的中點(diǎn),
∴ED∥AB,且ED=$\frac{1}{2}$AB,
∴△EDO∽△BAO,
∴DO:AO=ED:AB=1:2;
(2)證明:設(shè)CF交ED于點(diǎn)G,
由△DGO∽△AFO,得到DG:AF=DO:AO=1:2,
由DG∥AB得DG:BF=CD:CB=1:2,
∴DG:AF=DG:BF,
∴AF=BF,
∴AF也是△ABC的中線;
(3)解:由∠A=90°,得到四邊形AFDE是矩形,
∴△EDK∽△BAE,
∵△EDK∽△CAB,
∴△BAE∽△CAB,
∴AE:AB=AB:AC,
∵AE=$\frac{1}{2}$AC,
∴AC:AB=$\sqrt{2}$.
點(diǎn)評(píng) 此題屬于相似形綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),三角形中位線定理,矩形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 對(duì)某社區(qū)的衛(wèi)生死角進(jìn)行調(diào)查 | |
B. | 對(duì)七年級(jí)(1)班40名同學(xué)的身高情況進(jìn)行調(diào)查 | |
C. | 審核書稿中的錯(cuò)別字 | |
D. | 對(duì)中學(xué)生目前的睡眠情況進(jìn)行調(diào)查 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com