13.若2x+5y-3=0,則4x-2•32y的值為$\frac{1}{2}$.

分析 根據(jù)同底數(shù)冪的乘法、除法,冪的乘方,即可解答.

解答 解:∵2x+5y-3=0,
∴2x+5y=3,
4x-2•32y=(22x-2•(25y=22x-4•25y=${2}^{2x+5y-4}={2}^{2x+5y}÷{2}^{4}={2}^{3}÷{2}^{4}=\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了同底數(shù)冪的乘法、除法,冪的乘方,解決本題的關(guān)鍵是熟記同底數(shù)冪的乘法、除法,冪的乘方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在△ABC中,點(diǎn)O是AC邊上的一動(dòng)點(diǎn),過O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)求證:EO=FO;
(2)當(dāng)O點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求不等式組$\left\{\begin{array}{l}{x-2≥1}\\{2(x-1)<x+3}\end{array}\right.$的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)$2\sqrt{12}×\frac{{\sqrt{3}}}{4}÷\sqrt{2}$;                 
(2)$\sqrt{45}$+$\sqrt{108}$+$\sqrt{1\frac{1}{3}}$-$\sqrt{125}$;
(3)($\frac{1}{2}$)-1×($\sqrt{3}$-$\sqrt{2}$)0+$\frac{4}{\sqrt{8}}$-|-$\sqrt{2}$|
(4)$({7+4\sqrt{3}})({7-4\sqrt{3}})-{({3\sqrt{5}-1})^2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

8.計(jì)算:
①a5•a3•a=a9;
②(a53÷a6=a9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=-x的圖象l是第二、四象限的角平分線.
(1)實(shí)驗(yàn)與探究:由圖觀察易知A(-1,3)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(-3,1),請(qǐng)你寫出點(diǎn)B(5,3)關(guān)于直線l的對(duì)稱點(diǎn)B′的坐標(biāo)為(-3,-5);
(2)歸納與發(fā)現(xiàn):結(jié)合圖形,自己選點(diǎn)再試一試,通過觀察點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(m,n)關(guān)于第二、四象限的角平分線l的對(duì)稱點(diǎn)P′的坐標(biāo)為(-n,-m);
(3)運(yùn)用與拓廣:
①已知兩點(diǎn)C(6,0),D(2,4),試在直線l上確定一點(diǎn)P,使點(diǎn)P到C,D兩點(diǎn)的距離之和最小,在圖中畫出點(diǎn)P的位置,保留作圖痕跡,并求出點(diǎn)P的坐標(biāo).
②在①的條件下,試求出PC+PD的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.現(xiàn)有一枚均勻的正方體骰子,六個(gè)面分別標(biāo)有數(shù)字1、2、3、4、5、6,連續(xù)拋擲兩次,朝上的數(shù)字分別為a,b,已知直線l1:y=$\frac{1}{2}x-\frac{1}{2}$,直線l2:y=$\frac{a}x+\frac{1}$,
(1)求直線l1∥l2的概率;
(2)求直線l1與l2的交點(diǎn)位于第一象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系中,點(diǎn)A(-3b,0)為x軸負(fù)半軸上一點(diǎn),點(diǎn)B(0,4b)為y軸正半軸上一點(diǎn),其中b滿足方程:3(b+1)=6.
(1)求點(diǎn)A、B的坐標(biāo);
(2)點(diǎn)C為y軸負(fù)半軸上一點(diǎn),且△ABC的面積為12,求點(diǎn)C的坐標(biāo);
(3)在x軸上是否存在點(diǎn)P,使得△PBC的面積等于△ABC的面積的一半?若存在,求出相應(yīng)的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列分解因式,正確的是(  )
A.4-x2+3x=(2-x)(2+x)+3xB.-x2+3x+4=-(x+4)(x-1)
C.4p3-6p2=2p(2p2-3p)D.(x-y)2-(y-x)=(y-x)(y-x-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案