如圖所示,在Rt△ABC中,C=90°,D,E分別為BC和AC的中點(diǎn),AD=5,BE=2數(shù)學(xué)公式,求AB的長.

解:設(shè)AE=CE=x,CD=BD=y,
∵△ACD與△BCE是直角三角形,
,
解得:,
AB===
即AB的長為
分析:先設(shè)AE=CE=x,CD=BD=y,再根據(jù)勾股定理得到關(guān)于x、y的方程組,分別求出x、y的值,再根據(jù)勾股定理即可得出AB的值.
點(diǎn)評:本題考查的是勾股定理,解答此類問題的關(guān)鍵是分別設(shè)出AE、CE、CD、BD的長,再根據(jù)勾股定理建立關(guān)于x、y的方程組.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于點(diǎn)D,且AB=4,BD=5,則點(diǎn)D到BC的距離是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,則∠DCB=
55
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂線l分別交AB、AC及BC的延長線于點(diǎn)D、E、F,連接BE. 求證:EF=2DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C為圓心,R為半徑所得的圓與斜邊AB只有一個公共點(diǎn),則R的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足為E,求證:四邊形CFED是菱形.

查看答案和解析>>

同步練習(xí)冊答案