分析 (1)根據(jù)等邊三角形的性質(zhì)得到∠PCD=∠PDC=∠CPD=60°,于是推出∠ACP=∠PDB=120°,等量代換得到∠BPD=∠CAP,根據(jù)相似三角形的性質(zhì)得到結(jié)論;
(2)由相似三角形的性質(zhì)得到$\frac{AC}{PD}=\frac{PC}{BD}$,根據(jù)等邊三角形的性質(zhì)得到PC=PD=CD,等量代換得到$\frac{AC}{CD}=\frac{CD}{BD}$,即可得到結(jié)論.
解答 證明:(1)∵△PCD是等邊三角形,
∴∠PCD=∠PDC=∠CPD=60°,
∴∠ACP=∠PDB=120°,
∵∠APB=120°,
∴∠APC+∠BPD=60°,
∵∠CAP+∠APC=60°
∴∠BPD=∠CAP,
∴△ACP∽△PDB;
(2)由(1)得△ACP∽△PDB,
∴$\frac{AC}{PD}=\frac{PC}{BD}$,
∵△PCD是等邊三角形,
∴PC=PD=CD,
∴$\frac{AC}{CD}=\frac{CD}{BD}$,
∴CD2=AC•BD.
點(diǎn)評(píng) 本題考查了相似三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練掌握相似三角形的性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com