【題目】《九章算術》是一本中國乃至東方世界最偉大的一本綜合性數(shù)學著作,標志著中國古代數(shù)學形成了完整的體系.“圓材埋壁是《九章算術》中的一個問題:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?朱老師根據(jù)原文題意,畫出了圓材截面圖如圖所示,已知:鋸口深為1寸,鋸道尺(1=10寸),則該圓材的直徑長為(

A.26B.25C.13D.

【答案】A

【解析】

取圓心O,連接OP,過OOHPQH,根據(jù)垂徑定理求出PH的長,再根據(jù)勾股定理求出OP的值,即可求出直徑.

解:取圓心O,連接OP,過OOHPQH,

由題意可知MH=1寸,PQ=10寸,
PH=5寸,
RtOPH中,OP2=OH2+PH2,設半徑為x
x2=x-12+52,
解得:x=13,
故圓的直徑為26寸,
故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù))的圖象與軸交于點和點,與交軸于點,表示當自變量為時的函數(shù)值,對于任意實數(shù),均有

1)求該二次函數(shù)的解析式;

2)點是線段上的動點,過點,交于點,連接.當的面積最大時,求點的坐標;

3)若平行于軸的動直線與該拋物線交于點,與直線交于點,點的坐標為.是否存在這樣的直線,使得是等腰三角形?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:

(1)頻數(shù)分布表中a = ,b= ,并將統(tǒng)計圖補充完整;

(2)如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成3030次以上的女學生有多少人?

(3)已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)和一次函數(shù)ymx+n的圖象過格點(網(wǎng)格線的交點)B、P

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)觀察圖象,直接寫出一次函數(shù)值大于反比例函數(shù)值時x的取值范圍是:   

3)在圖中用直尺和2B鉛筆畫出兩個矩形(不寫畫法),要求每個矩形均需滿足下列兩個條件:

①四個頂點均在格點上,且其中兩個頂點分別是點O,點P;

②矩形的面積等于k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系中,拋物線)與直線交于點、(點在點右邊),將拋物線沿直線翻折,翻折前后兩拋物線的頂點分別為點、,我們將兩拋物線之間形成的封閉圖形稱為驚喜線,四邊形稱為驚喜四邊形,對角線之比稱為驚喜度(Degree of surprise),記作.

1)如圖(1)拋物線沿直線翻折后得到驚喜線.則點坐標 ,點坐標 ,驚喜四邊形屬于所學過的哪種特殊平行四邊形? , .

2)如果拋物線)沿直線翻折后所得驚喜線的驚喜度為1,求的值.

3)如果拋物線沿直線翻折后所得的驚喜線在時,其最高點的縱坐標為16,求的值并直接寫出驚喜度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,的外接圓,連結OA、OB、OC,延長BOAC交于點D,與交于點F,延長BA到點G,使得,連接FG.

備用圖

1)求證:FG的切線;

2)若的半徑為4.

①當,求AD的長度;

②當是直角三角形時,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.

(1)求坡底C點到大樓距離AC的值;

(2)求斜坡CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校開展了主題為“垃圾分類,綠色生活新時尚”的宣傳活動,為了解學生對垃圾分類知識的掌握情況,該校環(huán)保社團成員在校園內(nèi)隨機抽取了部分學生進行問卷調(diào)查將他們的得分按優(yōu)秀、良好、合格、不合格四個等級進行統(tǒng)計,并繪制了如下不完整的統(tǒng)計表和條形統(tǒng)計圖.請根據(jù)圖表信息,解答下列問題:

本次調(diào)查隨機抽取了____ 名學生:表中 ;

補全條形統(tǒng)計圖:

若全校有名學生,請你估計該校掌握垃圾分類知識達到“優(yōu)秀"和“良好”等級的學生共有多少人

查看答案和解析>>

同步練習冊答案