【題目】如圖在平面直角坐標(biāo)系中,四邊形是菱形,點(diǎn)的坐標(biāo)為,平行于對(duì)角線(xiàn)的直線(xiàn)從原點(diǎn)出發(fā),沿軸正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),設(shè)直線(xiàn)與菱形的兩邊分別交于點(diǎn),直線(xiàn)運(yùn)動(dòng)的時(shí)間為(秒).

1)求點(diǎn)的坐標(biāo);

2)當(dāng)時(shí),求的值;

3)設(shè)的面積為,求的函數(shù)表達(dá)式,并確定的最大值.

【答案】1;

2t=;

3)S= ,當(dāng)t=5時(shí),S最大值=10.

【解析】

1)過(guò)點(diǎn)CCHOAH,由勾股定理求出OC,得出CB,即可得出結(jié)果;

2)分兩種情況:①當(dāng)0t5時(shí),由菱形的性質(zhì)得出OA=AB=BC=OC=5,OCAB,再由平行線(xiàn)得出△OMN∽△OAC,得出比例式求出OM即可;

②當(dāng)5t10時(shí),設(shè)直線(xiàn)MNOA交于點(diǎn)E.,同①可得AM= ,再證出△AEM∽△OAC.得出對(duì)應(yīng)邊成比例求出AM=AE,得出OE即可;

3)分兩種情況①當(dāng)0t5時(shí),求出△OAC的面積,再由相似三角形的性質(zhì)得出 ,即可得出結(jié)果;

②當(dāng)5t10時(shí),過(guò)點(diǎn)MMTx軸于T,由△BMN∽△AME可知,MT=t-5),得出SOMN=SONE-SOME=-t-52+10,即可得出結(jié)果.

解:(1)過(guò)點(diǎn),如圖1所示:

,

,

四邊形是菱形,

,,

點(diǎn)的坐標(biāo)為;

2)分兩種情況:

當(dāng)時(shí),如圖2所示:

∵四邊形是菱形,

,.

,

,

.

,

,

.

②當(dāng)5≤t≤10時(shí),如圖3所示:

設(shè)直線(xiàn)MNOA交于點(diǎn)E.,同①可得AM=

OCAB,MNAC,

∴∠COA=MAE,∠CAO=MEA

∴△AEM∽△OAC

,

OC=OA,

AM=AE,

OE=OA+AE= ,

t=.

綜上所述:

t=t=

3)分兩種情況:

①當(dāng)0≤t5時(shí)(如圖1),

SOAC=OACH=10,

∵△OMN∽△OAC

,即

S=t20≤t5);

②當(dāng)5≤t≤10時(shí),過(guò)點(diǎn)MMTx軸于T,如圖4所示:

由△BMN∽△AME可知,MT=t-5),

SOMN=SONE-SOME=-t52+10;

綜上所述:S= ,

∴當(dāng)t=5時(shí),S最大值=10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,AD=2,將矩形ABCD繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)后得到矩形EBGF,此時(shí)恰好四邊形AEHB為菱形,連接CH交FG于點(diǎn)M,則HM的長(zhǎng)度為( 。

A. B. 2 C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點(diǎn)O,點(diǎn)E在AO上,且OE=OC.

(1)求證:1=2;

(2)連結(jié)BE、DE,判斷四邊形BCDE的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,相切于點(diǎn)、,,上異于、的一個(gè)動(dòng)點(diǎn),則的度數(shù)為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間x(單位:h)變化的圖象

如圖所示,根據(jù)圖中提供的信息,有下列說(shuō)法:

①兩人相遇前,甲的速度小于乙的速度; ②出發(fā)后1小時(shí),兩人行程均為10km;

③出發(fā)后1.5小時(shí),甲的行程比乙多3km; ④甲比乙先到達(dá)終點(diǎn).

其中正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲、乙兩個(gè)不透明的布袋甲袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字01,2;乙袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字12,0;現(xiàn)從甲袋中隨機(jī)抽取一個(gè)小球,記錄標(biāo)有的數(shù)字為x,再?gòu)囊掖须S機(jī)抽取一個(gè)小球記錄標(biāo)有的數(shù)字為y,確定點(diǎn)M坐標(biāo)為x,y).

1用樹(shù)狀圖或列表法列舉點(diǎn)M所有可能的坐標(biāo);

2求點(diǎn)Mx,y在函數(shù)y=-x+1的圖象上的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖拋物線(xiàn)x軸于點(diǎn)、,交軸于點(diǎn);

1)求拋物線(xiàn)的解析式;

2)點(diǎn)從點(diǎn)A出發(fā),以1個(gè)單位/秒的速度向終點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)C出發(fā),以相同的速度沿軸正方向向上運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為秒,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)也停止運(yùn)動(dòng),設(shè)的面積為,求間的函數(shù)關(guān)系式并直接寫(xiě)出的取值范圍;

3)在(2)的條件下,當(dāng)點(diǎn)在線(xiàn)段上時(shí),設(shè)交直線(xiàn)于點(diǎn),過(guò)于點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自我省深化課程改革以來(lái),某校開(kāi)設(shè)了:A.利用影長(zhǎng)求物體高度,B.制作視力表,C.設(shè)計(jì)遮陽(yáng)棚,D.制作中心對(duì)稱(chēng)圖形,四類(lèi)數(shù)學(xué)實(shí)踐活動(dòng)課.規(guī)定每名學(xué)生必選且只能選修一類(lèi)實(shí)踐活動(dòng)課,學(xué)校對(duì)學(xué)生選修實(shí)踐活動(dòng)課的情況進(jìn)行抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)圖中信息解決下列問(wèn)題:

(1)本次共調(diào)查名學(xué)生,扇形統(tǒng)計(jì)圖中B所對(duì)應(yīng)的扇形的圓心角為度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)選修D類(lèi)數(shù)學(xué)實(shí)踐活動(dòng)的學(xué)生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機(jī)抽取2人做校報(bào)設(shè)計(jì),請(qǐng)用列表或畫(huà)樹(shù)狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù) 軸,軸交于兩點(diǎn),與反比例函數(shù)相交于兩點(diǎn),分別過(guò)兩點(diǎn)作軸,軸的垂線(xiàn),垂足為,連接,有下列四個(gè)結(jié)論:①的面積相等;②;③;④,其中正確的結(jié)論個(gè)數(shù)是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案