已知雙曲線y=
k
x
與拋物線y=-
1
3
x2+bx+c
交于A(2,3)、B(m,2)三點(diǎn).
(1)求雙曲線與拋物線的解析式;
(2)在平面直角坐標(biāo)系中描出點(diǎn)A、點(diǎn)B,并求出△ABO的面積.
分析:(1)直接把A點(diǎn)和B點(diǎn)坐標(biāo)代入反比例函數(shù)解析式可求出k與m,從而確定反比例解析式和B點(diǎn)坐標(biāo),然后把A、B兩點(diǎn)坐標(biāo)代入二次函數(shù)解析式得到關(guān)于b、c的方程組,解方程組求出b、c即可得到拋物線的解析式;
(2)利用S△OAB=S△OAC+S梯形ABDC-S△OBD進(jìn)行計(jì)算.
解答:解:(1)把A(2,3)和B(m,2)代入y=
k
x
得k=2×3=m×2,
解得k=6,m=3,
所以反比例函數(shù)解析式為y=
6
x
;
把A(2,3)和B(3,2)代入y=-
1
3
x2+bx+c得
-
4
3
+2b+c=3
-3+3b+c=2
,解得
b=
2
3
c=3
,
所以拋物線的解析式入y=-
1
3
x2+
2
3
x+3;

(2)作AC⊥x軸于C,BD⊥x軸于D,如圖,
S△OAB=S△OAC+S梯形ABDC-S△OBD
=
1
2
×2×3+
1
2
×(2+3)×1-
1
2
×3×2
=
5
2
點(diǎn)評:本題考查了用待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時(shí),要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.一般地,當(dāng)已知拋物線上三點(diǎn)時(shí),常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當(dāng)已知拋物線的頂點(diǎn)或?qū)ΨQ軸時(shí),常設(shè)其解析式為頂點(diǎn)式來求解;當(dāng)已知拋物線與x軸有兩個(gè)交點(diǎn)時(shí),可選擇設(shè)其解析式為交點(diǎn)式來求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知雙曲線y=
k
x
與直線y=
1
4
x
相交于A,B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(在A點(diǎn)左側(cè))是雙曲線y=
k
x
上的動點(diǎn).過點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過N(0,-n)作NC∥x軸交雙曲線y=
k
x
于點(diǎn)E,交BD于點(diǎn)C.若B是CD的中點(diǎn),四邊形OBCE的面積為4,則直線CM的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陸良縣模擬)已知雙曲線y=
kx
與拋物線y=ax2+bx+c交于A(2,3)、B(m,2)、c(-3,n)三點(diǎn).
(1)求m、n的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•竹溪縣模擬)如圖1,已知雙曲線y=
k
x
與直線y=
1
2
x
交于A,B兩點(diǎn),點(diǎn)A在第一象限,點(diǎn)A的橫坐標(biāo)為4.

(1)求k的值;
(2)若雙曲線上一點(diǎn)C的縱坐標(biāo)為8,求△AOC的面積;
(3)如圖2,過原點(diǎn)的另一條直線交雙曲線于P、Q兩點(diǎn),若由點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形面積為24,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知雙曲線y=
kx
與直線y=2x-3相交于點(diǎn)A(2,m),求:雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線y=
k
x
與直線y=
1
4
x
相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(在A點(diǎn)左側(cè))是雙曲線y=
k
x
上的動點(diǎn).過點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過N(0,-n)作NC∥x軸交雙曲線y=
k
x
于點(diǎn)E,交BD于點(diǎn)C.
(1)若點(diǎn)A坐標(biāo)是(8,2),求B點(diǎn)坐標(biāo)及反比例函數(shù)解析式.
(2)過A點(diǎn)作AQ垂直于y軸交于Q點(diǎn),設(shè)P點(diǎn)從D點(diǎn)出發(fā)沿D→C→N路線以1個(gè)單位長度的速度運(yùn)動,DC長為4.求△AQP的面積S與運(yùn)動時(shí)間t的關(guān)系式,并求出S的最大值.
(3)若B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式.

查看答案和解析>>

同步練習(xí)冊答案