【題目】已知甲、乙兩輛汽車分別從、兩地同時(shí)勻速出發(fā),甲車開往地,乙車開往地,設(shè)甲、乙兩車距地的路程分別為、(單位:),甲車的行駛時(shí)間為(單位:).若甲車的速度為,之間的對(duì)應(yīng)關(guān)系如下表:

2

5

560

320

1)分別求出、之間的函數(shù)關(guān)系式;(不寫的取值范圍)

2)當(dāng)為何值時(shí),甲、乙兩輛汽車相遇?

3)當(dāng)兩車距離小于時(shí),求的取值范圍.

【答案】1S=80t+720;(2t =4;(3)當(dāng)兩車距離小于180 km時(shí),3ht5h

【解析】

1)運(yùn)用待定系數(shù)法解答即可;
2)根據(jù)(1)的結(jié)論列方程解答即可;
3)分兩車相遇之前和兩車相遇之后兩種情況解答即可.

1)∵甲車的速度為100 km/h,

St之間的函數(shù)關(guān)系式為S=100t

∵兩車勻速行駛,

∴設(shè)St之間的函數(shù)關(guān)系式為S= kt+b,

又∵當(dāng)t=2 h時(shí),S=560 km;當(dāng)t=5 h時(shí),S=320 km,

,

解得

St之間的函數(shù)關(guān)系式為S=80t+720;

2)當(dāng)兩車相遇時(shí),有S=S,

100t =80t+720

解得t =4;

3)① 在兩車相遇之前,即當(dāng)t4時(shí),

SS

SS180,

即(﹣80t+720)﹣100t180,

化簡得:180t540,

解得:t3

3t4;

在兩車相遇之后,即當(dāng)t4時(shí),

SS,

SS180,

100t﹣(﹣80t+720)<180

解得:t5,

4t5

綜上可知:當(dāng)兩車距離小于180 km時(shí),3ht5h

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形各邊上分別截取,且,若四邊形的面積為.四邊形面積為,當(dāng),且時(shí),則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+3(a≠0)的對(duì)稱軸為直線x=﹣1,拋物線交x軸于AC兩點(diǎn),與直線yx1交于AB兩點(diǎn),直線AB與拋物線的對(duì)稱軸交于點(diǎn)E

(1)求拋物線的解板式.

(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動(dòng),若△ABP的面積最大,求此時(shí)點(diǎn)P的坐標(biāo).

(3)在平面直角坐標(biāo)系中,以點(diǎn)B、EC、D為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出符合條件點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直升飛機(jī)在大橋上方點(diǎn)處測(cè)得,兩點(diǎn)的俯角分別為31°和45°.若飛機(jī)此時(shí)飛行高度,且點(diǎn),,在同一條直線上,求大橋的長.(精確到)(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,動(dòng)點(diǎn)、同時(shí)從、兩點(diǎn)勻速出發(fā),以每秒1個(gè)單位長度的速度沿網(wǎng)格線運(yùn)動(dòng)至格點(diǎn)停止.動(dòng)點(diǎn)的運(yùn)動(dòng)路線為:;動(dòng)點(diǎn)的運(yùn)動(dòng)路線為:,連接、.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為的面積為,則之間的函數(shù)關(guān)系用圖象表示大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全問題受到全社會(huì)的廣泛關(guān)注,省教育局要求各學(xué)校加強(qiáng)對(duì)學(xué)生的安全教育,某中學(xué)為了了解學(xué)生對(duì)校園安全知識(shí)的了解程度(程度分為:A.十分熟悉、B.了解較多、C.了解較少、D.不了解),隨機(jī)抽取了該校部分學(xué)生進(jìn)行調(diào)查,統(tǒng)計(jì)整理并繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息解答下列問題:

1)本次接受調(diào)查的學(xué)生共有________人,扇形統(tǒng)計(jì)圖中A部分所對(duì)應(yīng)的扇形圓心角是______

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該中學(xué)共有學(xué)生1800人,估計(jì)該校學(xué)生中對(duì)校園安全知識(shí)的了解程度達(dá)到AB的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是一組有規(guī)律的圖案,圖案(1)是由4個(gè)組成的,圖案(2)是由7個(gè)組成的,圖案(3)是由10個(gè)組成的,以此類推,圖案(5)是由_________個(gè)組成的,圖案()是由_________個(gè)組成的.(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過原點(diǎn),P是拋物線的頂點(diǎn).

1)若m=-1,k3時(shí),求拋物線表達(dá)式.

2)若拋物線也經(jīng)過P點(diǎn),求ae之間的關(guān)系式.

3)若正比例函數(shù)y2x的圖像分別交直線x=-2,直線x3A、B兩點(diǎn),當(dāng)P在線段AB上移動(dòng)時(shí),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】意外創(chuàng)傷隨時(shí)可能發(fā)生,急救是否及時(shí)、妥善,直接關(guān)系到病人的安危.為普及急救科普知識(shí),提高學(xué)生的急救意識(shí)與現(xiàn)場急救能力,某校開展了急救知識(shí)進(jìn)校園培訓(xùn)活動(dòng).為了解七、八年級(jí)學(xué)生(七、八年級(jí)各有600名學(xué)生)的培訓(xùn)效果,該校舉行了相關(guān)的急救知識(shí)競賽.現(xiàn)從兩個(gè)年級(jí)各隨機(jī)抽取20名學(xué)生的急救知識(shí)競賽成績(百.分制)進(jìn)行分析,過程如下:

收集數(shù)據(jù):

七年級(jí):7985,7380,75,76,87,70,75,94,75,7881,72,75,80,86,59,83,77

八年級(jí):92,74,8782,72,81,94,8377,838081,7181,7277,82,8070,41

整理數(shù)據(jù):

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

七年級(jí)

0

1

0

a

7

1

八年級(jí)

1

0

0

7

b

2

分析數(shù)據(jù):

平均數(shù)

眾數(shù)

中位數(shù)

七年級(jí)

78

75

c

八年級(jí)

78

d

80.5

應(yīng)用數(shù)據(jù):

1)由上表填空:a   b   ;c   ;d   

2)估計(jì)該校七、八兩個(gè)年級(jí)學(xué)生在本次競賽中成績?cè)?/span>80分及以上的共有多少人?

3)你認(rèn)為哪個(gè)年級(jí)的學(xué)生對(duì)急救知識(shí)掌握的總體水平較好,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案