如圖9, 已知拋物線與軸交于A (-4,0) 和B(1,0)兩點(diǎn),與軸交于C(0,-2)點(diǎn).
1.求此拋物線的解析式;
2.設(shè)G是線段BC上的動(dòng)點(diǎn),作GH//AC交AB于H,連接CF,當(dāng)△BGH的面積是△CGH面積的3倍時(shí),求H點(diǎn)的坐標(biāo);
3.若M為拋物線上A、C兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過(guò)M作軸的平行線,交AC于N,當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段MN的值最大,并求此時(shí)M點(diǎn)的坐標(biāo)
1.設(shè)二次函數(shù)解析式為y=a(x-x1)(x-x2)
∵二次函數(shù)與軸交于、兩點(diǎn)可得:
∴x1 =-4 x2=1……………………………………………….1分
∴y=a(x+4)(x-1)
把C(0,-2)代入y=a(x+4)(x-1)得:a=
故所求二次函數(shù)的解析式為y= (x+4)(x-1)
=x2+x-2.
2.∵S△BGH =2 S△CGH
……………………………………………4分
∵GH//AC, ,
∴△BGH~△BAC,
……………6分
故E點(diǎn)的坐標(biāo)為(,0). ………………………….7分
3.若設(shè)直線的解析式為
∵ A、兩點(diǎn)的坐標(biāo)分別為(-4,0)、(0,-2).
則有 解得:
故直線的解析式為.……………………8分
若設(shè)M點(diǎn)的坐標(biāo)為,又N點(diǎn)是過(guò)點(diǎn)M所作軸的平行線與直線的交點(diǎn),則N點(diǎn)的坐標(biāo)為(.則有:
MN==
=……………………………………….9分
即當(dāng)時(shí),線段MN取大值,此時(shí)M點(diǎn)的坐標(biāo)為(-2,-3)…………10分
【解析】(1)將A、B的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值;
(2)根據(jù)拋物線的解析式可得出C點(diǎn)的坐標(biāo),易證得△ABC是直角三角形,則EF⊥BC;△CEF和△BEF同高,則面積比等于底邊比,由此可得出CF=2BF;易證得△BEF∽△BAC,根據(jù)相似三角形的性質(zhì),即可求得BE、AB的比例關(guān)系,由此可求出E點(diǎn)坐標(biāo);
(3)PQ的長(zhǎng)實(shí)際是直線AC與拋物線的函數(shù)值的差,可設(shè)P點(diǎn)橫坐標(biāo)為m,用m表示出P、Q的縱坐標(biāo),然后可得出PQ的長(zhǎng)與m的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出PQ最大時(shí),m的值,也就能求出此時(shí)P點(diǎn)的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com