【題目】周末,身高都為1.6米的小芳、小麗來到溪江公園,準(zhǔn)備用她們所學(xué)的知識測算南塔的高度.如圖,小芳站在A處測得她看塔頂?shù)难鼋?/span>α為45°,小麗站在B處(A、B與塔的軸心共線)測得她看塔頂?shù)难鼋?/span>β為30°.她們又測出A、B兩點的距離為30米.假設(shè)她們的眼睛離頭頂都為10cm,則可計算出塔高約為(結(jié)果精確到0.01,參考數(shù)據(jù): ≈1.414, ≈1.732)( 。
A. 36.21米 B. 37.71米 C. 40.98米 D. 42.48米
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聲音在空氣中的傳播速度y(m/s)隨氣溫x(℃)的變化而變化.下表給出了一組不同氣溫下聲音傳播的速度:
x(℃) | 0 | 5 | 10 | 15 | 20 | 25 |
y(m/s) | 331 | 334 | 337 | 340 | 343 | 346 |
(1)當(dāng)x的值為35時,求對應(yīng)的y的值;
(2)求y與x的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是線段上任意一點(端點除外),分別以為邊,并且在的同一側(cè)作等邊和等邊,連結(jié)交于,連結(jié)交于,給出以下三個結(jié)論:
① ② ③,其中結(jié)論正確的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)在“蜀南竹海”收購毛竹,直接銷售,每噸可獲利100元,進(jìn)行粗加工,每天可加工8噸,每噸可獲利800元;如果對毛竹進(jìn)行精加工,每天可加工1噸,每噸可獲利4000元.由于受條件限制,每天只能采用一種方式加工,要求將在一月內(nèi)(30天)將這批毛竹93噸全部銷售.為此企業(yè)廠長召集職工開會,讓職工討論如何加工銷售更合算.
甲說:將毛竹全部進(jìn)行粗加工后銷售;
乙說:30天都進(jìn)行精加工,未加工的毛竹直接銷售;
丙說:30天中可用幾天粗加工,再用幾天精加工后銷售;
請問廠長應(yīng)采用哪位說的方案做,獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某修理廠需要購進(jìn)甲、乙兩種配件,經(jīng)調(diào)查,每個甲種配件的價格比每個乙種配件的價格少0.4萬元,且用16萬元購買的甲種配件的數(shù)量與用24萬元購買的乙種配件的數(shù)量相同.
(1)求每個甲種配件、每個乙種配件的價格分別為多少萬元;
(2)現(xiàn)投入資金40萬元,根據(jù)維修需要預(yù)測,甲種配件要比乙種配件至少要多11件,問乙種配件最多可購買多少件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在數(shù)軸上A點表示數(shù),B點表示數(shù),、滿足||+||=0;
(1)點A表示的數(shù)為_____;點B表示的數(shù)為_____;
(2)若在原點O處放一擋板,一小球甲從點A處以1個單位/秒的速度向左運動;同時另一小球乙從點B處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設(shè)運動的時間為t(秒),
①當(dāng)t=1時,甲小球到原點的距離=_____;乙小球到原點的距離=_____.
當(dāng)t=3時,甲小球到原點的距離=_____;乙小球到原點的距離=_____.
②試探究:甲,乙兩小球到原點的距離可能相等嗎?若不能,請說明理由.若能,請直接寫出甲,乙兩小球到原點的距離相等時經(jīng)歷的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進(jìn)行調(diào)查,將“對自己做錯的題目進(jìn)行整理、分析、改正”(選項為:很少、有時、常常、總是)的調(diào)查數(shù)據(jù)進(jìn)行了整理,繪制成部分統(tǒng)計圖如圖.
請根據(jù)圖中信息,解答下列問題
(1)該調(diào)查抽取的學(xué)生數(shù)量為_________,________,“常常”對應(yīng)扇形的圓心角為_______;
(2)請你補(bǔ)全條形統(tǒng)計圖;
(3)若該校共有3200名學(xué)生,請你估計其中“總是”對錯題進(jìn)行整理、分析、改正的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=+bx+c(a>0)的頂點為P,其圖象與x軸有兩個交點A(﹣m,0),B(1,0),交y軸于點C(0,﹣3am+6a),以下說法:①m=3;②當(dāng)∠APB=120°時,a=;③當(dāng)∠APB=120°時,拋物線上存在點M(M與P不重合),使得△ABM是頂角為120°的等腰三角形;④拋物線上存在點N,當(dāng)△ABN為直角三角形時,有a≥.正確的是( ).
A.①② B.③④ C.①②③ D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com