如圖,反比例函數(shù)y1=的圖象與正比例函數(shù)y2=k2x的圖象交于點(diǎn)(2,1),則使y1>y2的x的取值范圍是( )

A.0<x<2
B.x>2
C.x>2或-2<x<0
D.x<-2或0<x<2
【答案】分析:先根據(jù)反比例函數(shù)與正比例函數(shù)的性質(zhì)求出B點(diǎn)坐標(biāo),由函數(shù)圖象即可得出結(jié)論.
解答:解:∵反比例函數(shù)與正比例函數(shù)的圖象均關(guān)于原點(diǎn)對(duì)稱(chēng),
∴A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),
∵A(2,1),
∴B(-2,-1),
∵由函數(shù)圖象可知,當(dāng)0<x<2或x<-2時(shí)函數(shù)y1的圖象在y2的上方,
∴使y1>y2的x的取值范圍是x<-2或0<x<2.
故選D.
點(diǎn)評(píng):本題考查的是反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,能根據(jù)數(shù)形結(jié)合求出y1>y2時(shí)x的取值范圍是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,反比例函數(shù)y1=
k
x
與直線(xiàn)y2=-2x相交于點(diǎn)A,A點(diǎn)的縱坐標(biāo)為2,則滿(mǎn)足y1<y2時(shí),x的取值范圍為(  )
A、-2<X<2
B、-1<x<0或x>1
C、x<-1或0<x<1
D、x<-1或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,反比例函數(shù)y1=
kx
的圖象與一次函數(shù)y2=mx+b的圖象交于A(1,3),B(n,-1)兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)根據(jù)圖象回答:①當(dāng)x<-3時(shí),寫(xiě)出y1的取值范圍;②當(dāng)y1≥y2時(shí),寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•灤南縣一模)如圖,反比例函數(shù)y1=
k1
x
和正比例函數(shù)y2=k2x的圖象交于A(-1,-3)、B(1,3)兩點(diǎn),若
k1
x
k2x
,則x的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖:反比例函數(shù)y1=
kx
的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和B(m,-2),與y軸交于點(diǎn)C.
(1)求這兩個(gè)函數(shù)的關(guān)系式.
(2)觀察圖象,寫(xiě)出使得y1<y2成立的自變量x的取值范圍.
(3)連接AO、BO,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,反比例函數(shù)y1=
k1
x
,y2=
k2
x
,y3=
k3
x
的圖象的一部分如圖所示,則k1,k2,k3的大小關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案