【題目】一個大正方形和四個全等的小正方形按圖①、②兩種方式擺放,設小正方形的邊長為x,請仔細觀察圖形回答下列問題.
1)用含a、b的代數(shù)式表示x,則x=____
2)用含a、b的代數(shù)式表示大正方形的邊長____.(請將結(jié)果化為最簡)
3)利用前兩問的結(jié)論求出圖②的大正方形中未被小正方形覆蓋部分的面積.(用a、b的代數(shù)式表示)

【答案】1;2;3ab

【解析】

1)由大正方形的邊長不變,可得出關(guān)于x的一元一次方程,解之即可得出x的值(用含ab的代數(shù)式表示);
2)將x的值代入a-2x,即可求出大正方形的邊長;
3)利用大正方形的面積-4×小正方形的面積,即可求出圖②的大正方形中未被小正方形覆蓋部分的面積.

1a-2x=b+2x,
x=
故答案為:
2)大正方形的邊長為a-2x=a-2×=
故答案為:
3S=2-4x2=2-4×2=ab

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明有5張寫著不同數(shù)字的卡片,請你按要求抽出卡片,完成下列各問題.

(1)從中取出2張卡片,使這兩張卡片上數(shù)字的乘積最大,乘積的最大值為______.

(2)從中取出2張卡片,使這兩張卡片上數(shù)字相除的商最小,商的最小值為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線AD對應的函數(shù)關(guān)系式為y=﹣2x﹣2,與拋物線交于點A(在x軸上),點D.拋物線與x軸另一交點為B(3,0),拋物線與y軸交點C(0,﹣6).

(1)求拋物線的解析式;

(2)如圖2,連結(jié)CD,過點D作x軸的垂線,垂足為點E,直線AD與y軸交點為F,若點P由點D出發(fā)以每秒1個單位的速度沿DE邊向點E移動,1秒后點Q也由點D出發(fā)以每秒3個單位的速度沿DC,CO,OE邊向點E移動,當其中一個點到達終點時另一個點也停止移動,點P的移動時間為t秒,當PQ⊥DF時,求t的值;圖3為備用圖)

(3)如果點M是直線BC上的動點,是否存在一個點M,使△ABM中有一個角為45°?如果存在,直接寫出所有滿足條件的M點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗暑假期間參加社會實踐活動,從某批發(fā)市場以批發(fā)價每個m元的價格購進100個手機充電寶,然后每個加價n元到市場出售(結(jié)果用含m,n的式子表示)

(1)求售出100個手機充電寶的總售價為多少元?

(2)由于開學臨近,小麗在成功售出60個充電寶后,決定將剩余充電寶按售價8折出售,并很快全部售完.(:售價的8折即按原售價的80%出售)

①她的總銷售額是多少元?

②假如不采取降價銷售,且也全部售完,她將比實際銷售多盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CFBC,連結(jié)CDEF.

(1)求證:四邊形CDEF是平行四邊形;

(2)求四邊形BDEF的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以RtABC的斜邊BC為邊,在ABC的同側(cè)作正方形BCEF,設正方形的中心為O,連接AO.若AB4,AO6,則AC的長等于( 。

A. 12B. 16C. 8+6D. 4+6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某運輸部門規(guī)定:辦理托運,當一件物品的重量不超過千克時,需付基礎費元和保險費元;為了限制過重物品的托運,當一件物品的重量超過千克時,除了付以上基礎費和保險費外,超過部分每千克還需付元的超重費.設某件物品的重量為千克,支付費用為.

1)當時,______________(用式子表示);

時,______________(用式子表示);

2)甲、乙、丙三人各托運一件物品,物品的重量與支付費用如下表所示:

托運人

物品重量/千克

支付費用/

14

33

20

39

30

根據(jù)以上提供的信息確定的值,并計算出丙所支付的費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.

(1)求證:△AEF≌△DEB;

(2)求證:四邊形ADCF是菱形;

(3)若AC=4,AB=5,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為

查看答案和解析>>

同步練習冊答案