已知二次函數(shù)x+2的圖象與x軸分別交于A、B兩點(diǎn)(如圖所示),與y軸交于點(diǎn)C,點(diǎn)P是其對(duì)稱(chēng)軸上一動(dòng)點(diǎn),當(dāng)PB+PC取得最小值時(shí),點(diǎn)P的坐標(biāo)為          

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(
5
2
13
4
),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱(chēng)軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的精英家教網(wǎng)三角形與△BOF相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(2,0),直線y=x+2與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A在y軸上(如圖示)
(1)求該二次函數(shù)的解析式;
(2)P為線段AB上一動(dòng)點(diǎn)(A、B兩端點(diǎn)除外),過(guò)P作x軸的垂線與二次函數(shù)的圖象交于點(diǎn)Q,設(shè)線段PQ的長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x,求出l與x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(3)在(2)的條件下,線段AB上是否存在一點(diǎn)P,使四邊形PQMA為梯形?若存在精英家教網(wǎng),求出點(diǎn)P的坐標(biāo),并求出梯形的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)點(diǎn)P作x軸的垂線與該二次函數(shù)的圖象交于點(diǎn)E.
(1)求b的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)若點(diǎn)D為直線AB與該二次函數(shù)的圖象對(duì)稱(chēng)軸的交點(diǎn),則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)圖象的頂點(diǎn)為D(1,-4),且經(jīng)過(guò)點(diǎn)A(-1,0).
(1)求該二次函數(shù)的關(guān)系式;
(2)設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為B,與y軸的交點(diǎn)為C,試判斷△BCD的形狀,并說(shuō)明理由;
(3)設(shè)經(jīng)過(guò)B、C、D三點(diǎn)的圓的圓心為O′,設(shè)⊙O′與x軸的另一個(gè)交點(diǎn)為E,求線段BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(2,0),直線y=x+2與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A在y軸上,P為線段AB上一動(dòng)點(diǎn)(除A,B兩端點(diǎn)外),過(guò)P作x軸的垂線與二次函數(shù)的圖象交于點(diǎn)Q,設(shè)線段PQ的長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x.
(1)求出l與x之間的函數(shù)關(guān)系式,并求出l的取值范圍;
(2)在線段AB上是否存在一點(diǎn)P,使四邊形PQMA為梯形?若存在,求出點(diǎn)P的坐標(biāo)及梯形PQMA的面積;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)2<x<6時(shí),延長(zhǎng)PQ、AM交于F,連接NF、PM,求證:NF⊥PM.

查看答案和解析>>

同步練習(xí)冊(cè)答案