【題目】如圖,四邊形ABCD是正方形,點(diǎn)GBC邊上任意一點(diǎn),DEAG于點(diǎn)E,BFDE且交AG于點(diǎn)F.

(1)如圖1,求證:AE=BF;

(2)連接DF,若tanBAG=,AB=2,求△ADF的面積.

【答案】(1)見(jiàn)解析;(2)8.

【解析】

(1)利用正方形的性質(zhì)證明BAFADE全等.(2)利用(1)和已知條件,分別求出DE,AF長(zhǎng)就可以求出三角形面積,

(1)∵四邊形ABCD是正方形,點(diǎn)GBC邊上任意一點(diǎn),DEAG于點(diǎn)E,BF∥DE,

∴∠AB=AD,∠BAD=90°,∠AED=90°,∠AED=∠BFA

∴∠BAF+∠EAD=90°,∠EAD+∠ADE=90°,

∴∠BAF=∠ADE,

BAFADE中,

,

∴△BAF≌△ADE(AAS),

BF=AE

AE=BF;

(2)由(1)知AED=BFA=90°,

∵tan∠BAG=,AB=2,

∴tan∠BAF=

AF=4,BF=2,

由(1)知,BAF≌△ADE,

AF=DE,

DE=4,

∵∠AED=90°,

∴△ADF的面積是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的角平分線(xiàn),添加下列條件能使ABD≌△ACD的是(

ABAC;②ABAD;③∠ADB90°;④BDCD.

A.①②③B.①②④C.①③D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰三角形ABC中,∠A90°,DBC邊的中點(diǎn).

(1)E在直角邊AB上運(yùn)動(dòng),F在直角邊AC上運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中始終保持BEAF.則△EDF_____是三角形.

(2)(1)的條件下,四邊形AEDF的面積是否發(fā)生變化?若不變化,請(qǐng)直接寫(xiě)出當(dāng)AB4時(shí),四邊形AEDF的面積;若變化,請(qǐng)說(shuō)明理由.

(3)E,F分別為ABCA延長(zhǎng)線(xiàn)上的點(diǎn),且BEAF,其他條件不變,那么(1)中的結(jié)論是否還成立?畫(huà)圖并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)A在第一象限,點(diǎn)B,C的坐標(biāo)分別為(2,1),(6,1),BAC=90°,AB=AC,直線(xiàn)ABy軸于點(diǎn)P,若ABCABC關(guān)于點(diǎn)P成中心對(duì)稱(chēng),則點(diǎn)A的坐標(biāo)為( 。

A. (﹣4,﹣5) B. (﹣5,﹣4) C. (﹣3,﹣4) D. (﹣4,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD邊上的一動(dòng)點(diǎn),它從點(diǎn)A出發(fā)沿在A→B→C→D路徑勻速運(yùn)動(dòng)到點(diǎn)D,設(shè)PAD的面積為y,P點(diǎn)的運(yùn)動(dòng)時(shí)間為x,則y關(guān)于x的函數(shù)圖象大致為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店銷(xiāo)售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球多15元,王老師從該網(wǎng)店購(gòu)買(mǎi)了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.

(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?

(2)根據(jù)消費(fèi)者需求,該網(wǎng)店決定用不超過(guò)8780元購(gòu)進(jìn)甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進(jìn)價(jià)為50元,乙種羽毛球每筒的進(jìn)價(jià)為40元.

①若設(shè)購(gòu)進(jìn)甲種羽毛球m筒,則該網(wǎng)店有哪幾種進(jìn)貨方案?

②若所購(gòu)進(jìn)羽毛球均可全部售出,請(qǐng)求出網(wǎng)店所獲利潤(rùn)W(元)與甲種羽毛球進(jìn)貨量m(筒)之間的函數(shù)關(guān)系式,并說(shuō)明當(dāng)m為何值時(shí)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為10cm,點(diǎn)E在邊AB上,且AE=4cm,

(1)如果點(diǎn)P在線(xiàn)段BC上以2cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).

若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)2秒后,BPE與CQP是否全等?請(qǐng)說(shuō)明理由.

若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_(kāi)_______cm/s時(shí),在某一時(shí)刻也能夠使BPE與CQP全等.

(2)若點(diǎn)Q以中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿正方形ABCD的四條邊運(yùn)動(dòng).求經(jīng)過(guò)多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫(xiě)出第一次相遇點(diǎn)在何處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=2x+3x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.

(1)求點(diǎn)A B的坐標(biāo);

(2)過(guò)點(diǎn)B作直線(xiàn)BPx軸相交于點(diǎn)P,且使OP=2OA,求的面積.

(3)直接寫(xiě)出y<0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】游泳是一項(xiàng)深受青少年喜愛(ài)的體育活動(dòng),學(xué)校為了加強(qiáng)學(xué)生的安全意識(shí),組織學(xué)生觀(guān)看了紀(jì)實(shí)片“孩子,請(qǐng)不要私自下水”,并于觀(guān)看后在本校的2000名學(xué)生中作了抽樣調(diào)查.請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問(wèn)題:

(1)這次抽樣調(diào)查中,共調(diào)查了__ __名學(xué)生;

(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;

(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校2000名學(xué)生中大約有多少人“一定會(huì)下河游泳”?

查看答案和解析>>

同步練習(xí)冊(cè)答案