已知:如圖,AB∥DE,CM平分∠BCE,CN⊥CM.求證:∠B=2∠DCN.
分析:先根據(jù)平行線的性質(zhì)得出∠B+∠BCE=180°,∠B=∠BCD,再根據(jù)CM平分∠BCE可知∠1=∠2,再由CN⊥CM可知,∠2+∠3=90°,故∠1+∠4=90°,所以∠3=∠4,故可得出結(jié)論.
解答:證明:∵AB∥DE,
∴∠B+∠BCE=180°,∠B=∠BCD,
∵CM平分∠BCE,
∴∠1=∠2,
∵CN⊥CM,
∴∠2+∠3=90°,∠1+∠4=90°,
∴∠3=∠4,
∵∠3+∠4=∠BCD,
∴∠B=2∠DCN.
點(diǎn)評(píng):本題考查的是平行線的性質(zhì),用到的知識(shí)點(diǎn)為:兩直線平行,內(nèi)錯(cuò)角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、已知:如圖,AB、AC分別切⊙O于B、C,D是⊙O上一點(diǎn),∠D=40°,則∠A的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB,CD相交于點(diǎn)O,且OA•OD=OB•OC,求證:AC∥DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,AC是弦,直線EF是過(guò)點(diǎn)C的⊙O的切線,AD⊥EF于點(diǎn)D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

29、已知,如圖,AB∥CD,∠EAB+∠FDC=180°.求證:AE∥FD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AB=AC,DB=DC,求證:∠B=∠C.

查看答案和解析>>

同步練習(xí)冊(cè)答案