如圖,拋物線y=
1
2
x2+bx+c與y軸交于點C,與x軸相交于A,B兩點,點A的坐標為(2,0),點C的坐標為(0,-4).
(1)求拋物線的解析式;
(2)點Q是線段OB上的動點,過點Q作QEBC,交AC于點E,連接CQ,設OQ=m,當△CQE的面積最大時,求m的值,并寫出點Q的坐標;
(3)若平行于x軸的動直線,與該拋物線交于點P,與直線BC交于點F,D的坐標為(-2,0),則是否存在這樣的直線l,使OD=DF?若存在,求出點P的坐標;若不存在,請說明理由.
(1)把x=2,y=0;x=0,y=-4代入y=
1
2
x2+bx+c,
0=
1
2
×4+2b+c
-4=c.

解得
b=1
c=-4.

故所求拋物線的解析式為y=
1
2
x2+x-4.

(2)如圖1,作EG⊥AQ于點G,由(1)可知,點B的坐標為(-4,0).
∴CO=4,AB=6,AQ=m+2.
∵QEBC,
∴△AEQ△ACB.
EG
CO
=
AQ
AB
,即
EG
4
=
m+2
6

∴EG=
2m+4
3

∴S△CQE=S△ACQ-S△AEQ=
1
2
AQ•CO-
1
2
AQ•EG
=
1
2
(m+2)(4-
2m+4
3
)
,
=-
1
3
m2+
2
3
m+
8
3
=-
1
3
(m-1)2+3

當m=1時,當△CQE的面積最大.
此時,點Q的坐標為(-1,0).

(3)若存在,如圖2,
∵點B的坐標為(-4,0),D的坐標為(-2,0),DO=DF,
∴DB=DF.∴∠ABC=∠BFD.
∵OC=OB,∠ABC=∠BCO=45°.
∴∠ABC=∠BFD=45°.
∴FD⊥AB.
則F(-2,-2).
1
2
x2+x-4=-2.
解得x1=-1-
5
,x2=-1+
5

所以點P的坐標為(-1-
5
,-2)或(-1+
5
,-2).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
2
x2+bx與直線y=2x交于點O(0,0),A(a,12).點B是拋物線上O,A之間的一個動點,過點B分別作x軸、y軸的平行線與直線OA交于點C,E.
(1)求拋物線的函數(shù)解析式;
(2)若點C為OA的中點,求BC的長;
(3)以BC,BE為邊構(gòu)造矩形BCDE,設點D的坐標為(m,n),求出m,n之間的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點,與y軸交于A點.
(1)根據(jù)圖象確定a、b、c的符號,并說明理由;
(2)如果點A的坐標為(0,-3),∠ABC=45°,∠ACB=60°,求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx(a≠0)的頂點在直線y=-
1
2
x-1
上,且過點A(4,0).
(1)求這個拋物線的解析式;
(2)設拋物線的頂點為P,是否在拋物線上存在一點B,使四邊形OPAB為梯形?若存在,求出點B的坐標;若不存在,請說明理由;
(3)設點C(1,-3),請在拋物線的對稱軸確定一點D,使|AD-CD|的值最大,請直接寫出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2的外公切線,A、B為切點,且∠ACB=90°.以AB所在直線為軸,過點C且垂直于AB的直線為軸建立直角坐標系,已知AO=4,OB=1.
(1)分別求出A、B、C各點的坐標;
(2)求經(jīng)過A、B、C三點的拋物線y=ax2+bx+c的解析式;
(3)如果⊙O1的半徑是5,問這條拋物線的頂點是否落在兩圓連心線O1O2上?如果在,請證明;如果不在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點C(0,4),頂點為(1,5).
(1)求該拋物線的函數(shù)關系式;
(2)連接AC、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線y=ax2+bx+c經(jīng)過原點(0,0)和A(1,-3),B(-1,5)兩點.
(1)求拋物線的解析式;
(2)設拋物線與x軸的另一個交點為C,以OC為直徑作⊙M,如果過拋物線上一點P作⊙M的切線PD,切點為D,且與y軸的正半軸交點為E,連接MD,已知E點的坐標為(0,m),求四邊形EOMD的面積(用含m的代數(shù)式表示);
(3)延長DM交⊙M于點N,連接ON,OD,當點P在(2)的條件下運動到什么位置時,能使得四邊形EOMD和△DON的面積相等,請求出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD是世紀廣場的示意圖,上底AD=90m,下底BC=150m,高100m,虛線MN是梯形ABCD的中位線.要設計修建寬度相同的一條橫向和兩條縱向大理石通道,橫向通道EGHF位于MN兩旁,且EF、GH與MN之間的距離相等,兩條縱向通道均與BC垂直,設通道寬度為xm.
(1)試用含x的代數(shù)式表示橫向通道EGHF的面積s1
(2)若三條通道的面積和恰好是梯形ABCD面積的
1
4
時,求通道寬度為x;
(3)經(jīng)測算大理石通道的修建費用y1(萬元)與通道寬度為xm的關系式為:y1=14x,廣場其余部分的綠化費用為0.05萬元/m2,若設計要求通道寬度x≤8m,則寬度x為多少時,世紀廣場修建總費用最少?最少費用為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一名男生推鉛球,鉛球行進高度y(單位:m)與水平距離x(單位:m)之間的關系是y=-
1
12
x2+
2
3
x+
5
3
.則他將鉛球推出的距離是______m.

查看答案和解析>>

同步練習冊答案