精英家教網(wǎng)如圖,小紅在作線段AB的垂直平分線時(shí),是這樣操作的:分別以點(diǎn)A,B為圓心,大于線段AB長(zhǎng)度一半的長(zhǎng)為半徑畫弧,相交于點(diǎn)C,D,則直線CD即為所求.連結(jié)AC,BC,AD,BD,根據(jù)她的作圖方法可知,四邊形ADBC一定是( 。
A、矩形B、菱形C、正方形D、等腰梯形
分析:根據(jù)垂直平分線的畫法得出四邊形ADBC四邊的關(guān)系進(jìn)而得出四邊形一定是菱形.
解答:解:∵分別以A和B為圓心,大于
1
2
AB的長(zhǎng)為半徑畫弧,兩弧相交于C、D,
∴AC=AD=BD=BC,
∴四邊形ADBC一定是菱形,
故選:B.
點(diǎn)評(píng):此題主要考查了線段垂直平分線的性質(zhì)以及菱形的判定,得出四邊形四邊關(guān)系是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

有兩張完全重合的三角形紙片,小亮同學(xué)將其中一張繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到三角形AMF(如圖1),若此時(shí)他測(cè)得BD=8cm,
∠ADB=30°.
(1)試探究線段BD與線段MF的數(shù)量關(guān)系,并簡(jiǎn)要說明理由;
(2)小紅與小亮同學(xué)繼續(xù)探究.他們將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得△AB1D1,AD1交FM于點(diǎn)K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<
90°),當(dāng)△AFK為等腰三角形時(shí),求旋轉(zhuǎn)角β的度數(shù);
(3)在圖2基礎(chǔ)上小強(qiáng)同學(xué)繼續(xù)探究,過點(diǎn)K作KC∥B1D1交AB1于點(diǎn)C,連接CM,(如圖3)求證:△ACM∽△AKF;
(4)若將△AFM沿AB方向平移得到△A2F2M2(如圖4),F(xiàn)2M2與AD交于點(diǎn)P,A2M2與BD交于點(diǎn)N,當(dāng)NP∥AB時(shí),求平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•延慶縣一模)閱讀下面材料:
小紅遇到這樣一個(gè)問題,如圖1:在△ABC中,AD⊥BC,BD=4,DC=6,且∠BAC=45°,求線段AD的長(zhǎng).

小紅是這樣想的:作△ABC的外接圓⊙O,如圖2:利用同弧所對(duì)圓周角和圓心角的關(guān)系,可以知道∠BOC=90°,然后過O點(diǎn)作
OE⊥BC于E,作OF⊥AD于F,在Rt△BOC中可以求出⊙O半徑及OE,在Rt△AOF中可以求出AF,最后利用AD=AF+DF得以解決此題.
請(qǐng)你回答圖2中線段AD的長(zhǎng)
12
12

參考小紅思考問題的方法,解決下列問題:如圖3:在△ABC中,AD⊥BC,BD=4,DC=6,且∠BAC=30°,則線段AD的長(zhǎng)
3
11
+5
3
3
11
+5
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年5月中考數(shù)學(xué)模擬試卷(40)(解析版) 題型:解答題

閱讀下面材料:
小紅遇到這樣一個(gè)問題,如圖1:在△ABC中,AD⊥BC,BD=4,DC=6,且∠BAC=45°,求線段AD的長(zhǎng).

小紅是這樣想的:作△ABC的外接圓⊙O,如圖2:利用同弧所對(duì)圓周角和圓心角的關(guān)系,可以知道∠BOC=90°,然后過O點(diǎn)作
OE⊥BC于E,作OF⊥AD于F,在Rt△BOC中可以求出⊙O半徑及OE,在Rt△AOF中可以求出AF,最后利用AD=AF+DF得以解決此題.
請(qǐng)你回答圖2中線段AD的長(zhǎng)______.
參考小紅思考問題的方法,解決下列問題:如圖3:在△ABC中,AD⊥BC,BD=4,DC=6,且∠BAC=30°,則線段AD的長(zhǎng)______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省泰州市泰興市濟(jì)川中學(xué)中考數(shù)學(xué)二模試卷(6月份)(解析版) 題型:解答題

有兩張完全重合的三角形紙片,小亮同學(xué)將其中一張繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到三角形AMF(如圖1),若此時(shí)他測(cè)得BD=8cm,
∠ADB=30°.
(1)試探究線段BD與線段MF的數(shù)量關(guān)系,并簡(jiǎn)要說明理由;
(2)小紅與小亮同學(xué)繼續(xù)探究.他們將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得△AB1D1,AD1交FM于點(diǎn)K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<
90°),當(dāng)△AFK為等腰三角形時(shí),求旋轉(zhuǎn)角β的度數(shù);
(3)在圖2基礎(chǔ)上小強(qiáng)同學(xué)繼續(xù)探究,過點(diǎn)K作KC∥B1D1交AB1于點(diǎn)C,連接CM,(如圖3)求證:△ACM∽△AKF;
(4)若將△AFM沿AB方向平移得到△A2F2M2(如圖4),F(xiàn)2M2與AD交于點(diǎn)P,A2M2與BD交于點(diǎn)N,當(dāng)NP∥AB時(shí),求平移的距離是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案