分析 (1)①+②得a2+b2+c2=14a-13,進一步得到b2+c2=-a2+14a-13=-(a-7)2+36,根據(jù)非負(fù)數(shù)的性質(zhì)即可求出a的取值范圍;
(2)令t=$\sqrt{a+3}$,可得$\sqrt{a+3}$-a=-(t-$\frac{1}{2}$)2+$\frac{13}{4}$,把t的范圍代入$\sqrt{a+3}$-a,可求m的范圍.
解答 解:(1)$\left\{\begin{array}{l}{{a}^{2}-bc-8a+7=0①}\\{^{2}+{c}^{2}+bc-6a+6=0②}\end{array}\right.$,
①+②得a2+b2+c2=14a-13,
b2+c2=-a2+14a-13=-(a-7)2+36,
∵b2+c2≥0,
∴-(a-7)2+36≥0,
∴(a-7)2≤36,
∴-6≤a-7≤6
∴1≤a≤13.
故a的范圍為:1≤a≤13.
(2)令t=$\sqrt{a+3}$,
則t2=a+3,即a=t2-3,
則$\sqrt{a+3}$-a
=t-t2+3
=-(t-$\frac{1}{2}$)2+$\frac{13}{4}$
∵2≤t≤4,
∴$\sqrt{a+3}$-a的最小值是-(4-$\frac{1}{2}$)2+$\frac{13}{4}$=-9,
∴m<-9.
故m的范圍是m<-9.
點評 本題考查的是高次方程、完全平方公式及最值問題,能把方程化為完全平方公式的形式是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com