【題目】如圖,在同一平面內(nèi)四個(gè)點(diǎn)A,B,C,D

1)利用尺規(guī),按下面的要求作圖.要求:不寫畫法,保留作圖痕跡,不必寫結(jié)論.

作射線AC;

連接AB,BC,BD,線段BD與射線AC相交于點(diǎn)O;

在線段AC上作一條線段CF,使CFACBD

2)觀察(1)題得到的圖形,我們發(fā)現(xiàn)線段AB+BCAC,得出這個(gè)結(jié)論的依據(jù)是   

【答案】(1)①如圖所示,射線AC即為所求,見解析;②如圖所示,線段AB,BC,BD即為所求,見解析;③如圖所示,線段CF即為所求,見解析;(2)根據(jù)兩點(diǎn)之間,線段最短

【解析】

(1)①連接AC并延長即可;②連接AB,BC,BD即可;③以點(diǎn)A為圓心,BD長為半徑畫弧交ACF,則線段CF=AC-BD;

(2)根據(jù)兩點(diǎn)之間,線段最短,可得AB+BC>AC.

(1)①如圖所示,射線AC即為所求;

②如圖所示,線段AB,BC,BD即為所求;

③如圖所示,線段CF即為所求;

(2)根據(jù)兩點(diǎn)之間,線段最短,可得AB+BC>AC.

故答案為:兩點(diǎn)之間,線段最短.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線 軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的坐標(biāo)為(3,0),與 軸交于點(diǎn)C(0,-3),頂點(diǎn)為D。

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo)。
(2)聯(lián)結(jié)AC,BC,求∠ACB的正切值。
(3)點(diǎn)P是x軸上一點(diǎn),是否存在點(diǎn)P使得△PBD與△CAB相似,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。
(4)M是拋物線上一點(diǎn),點(diǎn)N在 軸,是否存在點(diǎn)N,使得以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)N的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1個(gè)單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,△ABC的頂點(diǎn)都在格點(diǎn)上,請解答下列問題:

(1)作出△ABC向左平移4個(gè)單位長度后得到的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);

(2)將△A1B1C1繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A2B2C2,請畫出旋轉(zhuǎn)后的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝即將到來的2018年國慶節(jié),某校舉行了書法比賽,賽后整理了參賽同學(xué)的成績,并制作了如下兩幅不完整的統(tǒng)計(jì)圖表

分?jǐn)?shù)段

頻數(shù)

頻率

60≤x<70

30

0.15

70≤x<80

m

0.45

80≤x<90

60

n

90≤x<100

20

0.1

請根據(jù)以上圖表提供的信息,解答下列問題:

(1)這次共調(diào)查了   名學(xué)生;表中的數(shù)m=   ,n=   

(2)請補(bǔ)全頻數(shù)直方圖;

(3)若繪制扇形統(tǒng)計(jì)圖,則分?jǐn)?shù)段60≤x<70所對應(yīng)的扇形的圓心角的度數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為12,BM=CN=5,CM,DN交于點(diǎn)O.則下列結(jié)論:
①DN⊥MC;②DN垂直平分MC;③sin∠OCD= ;④SODC=S四邊形BMON中,
正確的有(填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長至點(diǎn)F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以O(shè)為圓心的弧 度數(shù)為60°,∠BOE=45°,DA⊥OB,EB⊥OB.
(1)求 的值;
(2)若OE與 交于點(diǎn)M,OC平分∠BOE,連接CM.說明CM為⊙O的切線;
(3)在(2)的條件下,若BC=1,求tan∠BCO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D、均在小正方形的頂點(diǎn)上,請用無刻度直尺作出以下圖形:
①在方格紙中畫以AB為一邊的菱形ABEF,點(diǎn)E、F在小正方形的頂點(diǎn)上,且菱形ABEF的面積為3;
②在方格紙中畫以CD為一邊的等腰△CDG,點(diǎn)G在小正方形的頂點(diǎn)上,連接EG,使∠BEG=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系中的位置如圖所示.

1)作出△ABC關(guān)于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點(diǎn)的坐標(biāo);

2)將△ABC向右平移6個(gè)單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo);

3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請用實(shí)線條畫出對稱軸。

查看答案和解析>>

同步練習(xí)冊答案