(1)操作:如圖1,在線段AB所在的直線上取一點(diǎn)O(O點(diǎn)在線段外),將線段AB繞點(diǎn)O旋轉(zhuǎn)一周,所得到的圖形是個(gè)圓環(huán)(如圖2),此圓環(huán)的面積就是線段AB所掃過的面積,已知AB=2,OA=1,則線段AB掃過的面積為
 

精英家教網(wǎng)
(2)如圖3,在Rt△ABC中,∠C=90°,∠B=30°,AC=2,若將△ABC繞點(diǎn)A旋轉(zhuǎn)一周,那么邊BC掃過的圖形為
 
,面積為
 

(3)若將圖3中的Rt△ABC繞點(diǎn)C旋轉(zhuǎn)一周,則邊AB掃過的圖形是什么?面積為多少?
(結(jié)果中保留π)
分析:(1)線段AB所掃過的圓環(huán)的面積為大圓的面積減去小圓的面積,其中大圓半徑OB=3,小圓半徑OA=1,利用圓的面積公式計(jì)算即可;
(2)將△ABC繞點(diǎn)A旋轉(zhuǎn)一周,那么邊BC掃過的圖形為圓環(huán),它的面積為大圓的面積減去小圓的面積,其中大圓半徑AB=4,小圓半徑AC=2,利用圓的面積公式計(jì)算即可;
(3)Rt△ABC繞點(diǎn)C旋轉(zhuǎn)一周,則邊AB掃過的圖形是圓環(huán),它的面積為大圓的面積減去小圓的面積,其中小圓半徑為C到AB的距離CE=
3
,大圓半徑CB=2
3
,利用圓的面積公式計(jì)算即可;
解答:精英家教網(wǎng)解:(1)∵AB=2,OA=1,
∴OB=3,
∴S圓環(huán)=π(OB2-OA2)=π(9-1)=8π;

(2)∵在Rt△ABC中,∠C=90°,∠B=30°,AC=2,
∴AB=2AC=4,
∵將△ABC繞點(diǎn)A旋轉(zhuǎn)一周,那么邊BC掃過的圖形為圓環(huán),
∴邊BC掃過的圖形面積=π(AB2-AC2)=π(42-22)=12π;

(3)過C作CE⊥AB,如圖,
Rt△ABC繞點(diǎn)C旋轉(zhuǎn)一周,則邊AB掃過的圖形是以CE和CB為半徑的兩圓形成的圓環(huán),
∵∠B=30°,AC=2,
∴BC=2
3
,
∴CE=
3

∴S圓環(huán)=π(CB2-CE2)=π(12-3)=9π.
故答案為8π;圓環(huán),12π.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.同時(shí)考查了含30的直角三角形三邊的關(guān)系以及圓的面積公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,將菱形紙片AB(E)CD(F)沿對(duì)角線BD(EF)剪開,得到△ABD和△ECF,固定△ABD,并把△ABD與△ECF疊放在一起.精英家教網(wǎng)
(1)操作:如圖2,將△ECF的頂點(diǎn)F固定在△ABD的BD邊上的中點(diǎn)處,△ECF繞點(diǎn)F在BD邊上方左右旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時(shí)FC交BA于點(diǎn)H(H點(diǎn)不與B點(diǎn)重合),F(xiàn)E交DA于點(diǎn)G(G點(diǎn)不與D點(diǎn)重合).
求證:BH•GD=BF2
(2)操作:如圖3,△ECF的頂點(diǎn)F在△ABD的BD邊上滑動(dòng)(F點(diǎn)不與B、D點(diǎn)重合),且CF始終經(jīng)過點(diǎn)A,過點(diǎn)A作AG∥CE,交FE于點(diǎn)G,連接DG.
探究:FD+DG=
 
.請(qǐng)予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南昌)已知,紙片⊙O的半徑為2,如圖1,沿弦AB折疊操作.
(1)①折疊后的
AB
所在圓的圓心為O′時(shí),求O′A的長(zhǎng)度;
     ②如圖2,當(dāng)折疊后的
AB
經(jīng)過圓心為O時(shí),求
AOB
的長(zhǎng)度;
     ③如圖3,當(dāng)弦AB=2時(shí),求圓心O到弦AB的距離;
(2)在圖1中,再將紙片⊙O沿弦CD折疊操作.
①如圖4,當(dāng)AB∥CD,折疊后的
AB
CD
所在圓外切于點(diǎn)P時(shí),設(shè)點(diǎn)O到弦AB、CD的距離之和為d,求d的值;
②如圖5,當(dāng)AB與CD不平行,折疊后的
AB
CD
所在圓外切于點(diǎn)P時(shí),設(shè)點(diǎn)M為AB的中點(diǎn),點(diǎn)N為CD的中點(diǎn),試探究四邊形OMPN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)動(dòng)手操作:
如圖①,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)c'處,折痕為EF,若∠ABE=20°,那么∠EFC'的度數(shù)為
 

(2)觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請(qǐng)說明理由.
精英家教網(wǎng)
(3)實(shí)踐與運(yùn)用:
將矩形紙片ABCD 按如下步驟操作:將紙片對(duì)折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開紙片,此時(shí)恰好有MP=MN=PQ(如圖④),求∠MNF的大。
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•曲阜市模擬)(1)操作發(fā)現(xiàn)
如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,且點(diǎn)G在矩形ABCD內(nèi)部.小明將BG延長(zhǎng)交DC于點(diǎn)F,認(rèn)為GF=DF,你同意嗎?說明理由.
(2)問題解決
保持(1)中的條件不變,DC=2DF,求
ADAB
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

鄰邊不相等的矩形紙片,剪去一個(gè)正方形,余下一個(gè)四邊形,稱為第一次操作;在余下的四邊形中減去一個(gè)正方形,又余下一個(gè)四邊形,稱為第二次操作;…,以此類推,若第n次操作后余下的四邊形是正方形,則稱原矩形是n階矩形.如圖1,矩形ABCD中,若AB=1,AD=2,則矩形ABCD是1階矩形.
探究:(1)兩邊分別是2和3的矩形是
2
2
階矩形;
(2)小聰為了剪去一個(gè)正方形,進(jìn)行如下的操作:如圖2,把矩形ABCD沿著BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC的點(diǎn)F處,得到四邊形ABFE.請(qǐng)證明四邊形ABFE是正方形.
(3)操作、計(jì)算:
①已知矩形的兩邊分別是2,a(a>2),而且它是3階矩形,請(qǐng)畫出此矩形及裁剪線的示意圖,并在示意圖下方直接寫出a的值;
②已知矩形的兩鄰邊長(zhǎng)為a,b,(a>b),且滿足a=5b+m,b=4m.請(qǐng)直接寫出矩形是幾階矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案