【題目】某工程隊在我市實施棚戶區(qū)改造過程中承包了一項拆遷工程.原計劃每天拆遷因為準備工作不足,第一天少拆遷了.從第二天開始,該工程隊加快了拆遷速度,第三天拆遷了.求:

該工程隊第一天拆遷的面積;

若該工程隊第二天、第三天每天的拆遷面積比前一天增加的百分數(shù)相同,求這個百分數(shù).

【答案】(1)該工程隊第一天拆遷的面積為1000m2;(2)該工程隊第二天、第三天每天的拆遷面積比前一天增長的百分數(shù)是20%.

【解析】

試題(1)第一天拆遷面積=原計劃的拆遷面積×1-20%),把相關數(shù)值代入計算即可;

2)等量關系為:第一天的拆遷面積×1+百分數(shù))2=3天的拆遷面積,把相關數(shù)值代入計算即可.

1)該工程隊第一天拆遷面積是1250×1-20%=1000m2;

2)設這個百分數(shù)是x,則

10001+x2=1440,

1+x2=1.44

1+x=±1.2,

x1=1.2-1=0.2=20%,x2=-1.2-1=-2.2

經檢驗:x2=-2.2不合題意,舍去,只取x1=20%,

答:這個百分數(shù)是20%

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+cx軸交于點A(﹣10)和點B3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點ED是拋物線的頂點.

1)求此拋物線的解析式;

2)求點C和點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是以AB為直徑的半圓O的三等分點,AC=2,則圖中陰影部分的面積是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有兩個不相等的實數(shù)根.

(1)求k的取值范圍;

(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0x2+mx﹣1=0有一個相同的根,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學課外興趣小組成員在研究下面三個有聯(lián)系的問題,請你幫助他們解決:

1)如圖1,矩形ABCD中,ABaBCb,點EF分別在AB,DC上,點G,H分別在AD,BC上且EFGH,求的值.

2)如圖2,矩形ABCD中,AB4BC3,將矩形對折,使得B、D重疊,折痕為EF,求EF的長.

3)如圖3,四邊形ABCD中,∠ABC90°,ABAD8BCCD4,AMDN,點MN分別在邊BC,AB上,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊ABC邊長為2,DBC中點,連接AD.O在線段AD上運動(不含端點A、D),以點O為圓心,長為半徑作圓,當OABC的邊有且只有兩個公共點時,DO的取值范圍為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網格圖中建立一直角坐標系,一條圓弧經過網格點A、B、C,請在網格中進行下列操作:

(1)在圖中確定該圓弧所在圓的圓心D點的位置,并寫出點D點坐標為________.

(2)連接AD、CD,求⊙D的半徑及的長;

(3)有一點E(6,0),判斷點E與⊙D的位置關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑OC=5cm,直線lOC,垂足為H,且交⊙OA、B兩點,AB=8cm,則l沿OC所在直線平移后與⊙O相切,則平移的距離是(

A.2cm8cmB.2cmC.1cm 8cmD.1cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,FAM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N

1)求證:△ABM∽△EFA;

2)若AB=12BM=5,求DE的長.

查看答案和解析>>

同步練習冊答案