【題目】如圖,已知△ABC中,∠C=90°,AC=BC= ,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B.
(1)請你在圖中把圖補畫完整;
(2)求C′B的長.
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)題意作出圖形即可;
(2)連接BB′,延長BC′交AB′于點M;根據(jù)全等三角形的性質得到得到∠MBB′=∠MBA=30°;求出BM、C′M的長,即可解決問題.
解:(1)如圖1所示,
(2)如圖2,連接BB′,延長BC′交AB′于點M;
由題意得:∠BAB′=60°,BA=B′A,
∴△ABB′為等邊三角形,
∴∠ABB′=60°,AB=B′B;
在△ABC′與△B′BC′中,
,
∴△ABC′≌△B′BC′(SSS),
∴∠MBB′=∠MBA=30°,
∴BM⊥AB′,且AM=B′M;
由題意得:AB2=4,
∴AB′=AB=2,AM=1,
∴C′M=AB′=1;由勾股定理可求:BM=,
∴C′B=-1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標分別是A(0,1),B(1,3),C(4,3).
(1)將△ABC平移得到△A1B1C1,且C1的坐標是(0,﹣1),畫出△A1B1C1;
(2)將△ABC繞點A逆時針旋轉90°得到△A2B2C2,畫出△A2B2C2;
(3)小娟發(fā)現(xiàn)△A1B1C1繞點P旋轉也可以得到△A2B2C2,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+m與拋物線y=ax2+bx都經(jīng)過點A(6,0),點B,過B作BH垂直x軸于H,OA=3OH.直線OC與拋物線AB段交于點C.
(1)求拋物線的解析式;
(2)當點C的縱坐標是時,求直線OC與直線AB的交點D的坐標;
(3)在(2)的條件下將△OBH沿BA方向平移到△MPN,頂點P始終在線段AB上,求△MPN與△OAC公共部分面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,E為OC上動點(與點O不重合),作AF⊥BE,垂足為G,交BC于F,交B0于H,連接OG,CC.
(1)求證:AH=BE;
(2)試探究:∠AGO的度數(shù)是否為定值?請說明理由;
(3)若OG⊥CG,BG=,求△OGC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某無人機興趣小組在操場上開展活動(如圖),此時無人機在離地面30米的D處,無人機測得操控者A的俯角為37°,測得點C處的俯角為45°.又經(jīng)過人工測量操控者A和教學樓BC距離為57米,求教學樓BC的高度.(注:點A,B,C,D都在同一平面上.參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB⊥BC,點P是邊AD上一動點,將△ABP沿BP折疊得到△BEP,連接DE,CE,已知AB=4,AD=3,BC=6,則△CDE面積的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一張矩形紙片中,對角線,點分別是和的中點,現(xiàn)將這張紙片折疊,使點落在上的點處,折痕為,若的延長線恰好經(jīng)過點,則點到對角線的距離為( ).
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com