(2013•淄博)如圖,△ABC的周長為26,點D,E都在邊BC上,∠ABC的平分線垂直于AE,垂足為Q,∠ACB的平分線垂直于AD,垂足為P,若BC=10,則PQ的長為( 。
分析:首先判斷△BAE、△CAD是等腰三角形,從而得出BA=BE,CA=CD,由△ABC的周長為26,及BC=10,可得DE=6,利用中位線定理可求出PQ.
解答:解:∵BQ平分∠ABC,BQ⊥AE,
∴△BAE是等腰三角形,
同理△CAD是等腰三角形,
∴點Q是AE中點,點P是AD中點(三線合一),
∴PQ是△ADE的中位線,
∵BE+CD=AB+AC=26-BC=26-10=16,
∴DE=BE+CD-BC=6,
∴PQ=
1
2
DE=3.
故選C.
點評:本題考查了三角形的中位線定理,解答本題的關鍵是判斷出△BAE、△CAD是等腰三角形,利用等腰三角形的性質確定PQ是△ADE的中位線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•淄博)如圖,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,則下列等式成立的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•淄博)如圖,AB是⊙O的直徑,
AD
=
DE
,AB=5,BD=4,則sin∠ECB=
4
5
4
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•淄博)如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點C落在DP(P為AB中點)所在的直線上,得到經過點D的折痕DE.則∠DEC的大小為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•淄博)如圖,Rt△OAB的頂點A(-2,4)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標為( 。

查看答案和解析>>

同步練習冊答案