精英家教網 > 初中數學 > 題目詳情

【題目】(本題6分)如圖,一架2.5米長的梯子AB,斜靠在一豎直的墻AO上,這時梯足B到墻底端O的距離為0.7米, 如果梯子的頂端沿墻下滑0.4米,那么梯足將向外移多少米?

【答案】0.8米

【解析】

試題首先根據RtAOB的勾股定理求出AO的長度,然后計算出OC的長度,根據RtCOD的勾股定理求出OD的長度,最后根據BD=OD-0B進行求解.

試題解析:由題意,在RtAOB中,AB=2.5米,BO=0.7米

由勾股定理得AO==2.4米

CO=AO-AC=2.4-0.4=2米

在RtCOD中,CD=2.5米,CO=2米 由勾股定理得OD==1.5米

BD=OD-OB=1.5-0.7=0.8米

答:梯足將向外移0.8米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】李紅在學校的研究性學習小組中負責了解初一年級200名女生擲實心球的測試成績.她從中隨機調查了若干名女生的測試成績(單位:米),并將統(tǒng)計結果繪制成了如下的統(tǒng)計圖表(內容不完整).

測試成績

合計

頻數

3

27

9

m

1

n


請你結合圖表中所提供的信息,回答下列問題:
(1)表中m= , n=;
(2)請補全頻數分布直方圖;
(3)在扇形統(tǒng)計圖中, 這一組所占圓心角的度數為度;
(4)如果擲實心球的成績達到6米或6米以上為優(yōu)秀,請你估計該校初一年級女生擲實心球的成績達到優(yōu)秀的總人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E,F是對角線BD上的兩點,且BFDE

求證:(1AECF;

2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數是購買手電筒個數的一半.

(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?

(2)經商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數是臺燈個數的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,ABAC,AB=2,AC=4.對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉α°,分別交直線BC、AD于點E、F.

(1)當α=   °,四邊形ABEF是平行四邊形;

(2)在旋轉的過程中,從A、B、C、D、E、F中任意4個點為頂點構造四邊形.

①α=   °,構造的四邊形是菱形;

若構造的四邊形是矩形,求出該矩形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小凡與小光從學校出發(fā)到距學校5千米的圖書館看書,小光直接去圖書館, 小凡途中從路邊超市買了一些學習用品,如圖反應了他們倆人離開學校的路程s(千米)與時間t(分鐘)的關系,請根據圖象提供的信息回答問題:

(1) 是描述小凡的運動過程(填);

(2)小凡和小光先出發(fā)的是 ,先出發(fā)了 分鐘;

(3)小凡與小光先到達圖書館的是 ,先到了 分鐘;

(4)求小凡與小光從學校到圖書館的平均速度各是多少?(不包括中間停留的時間)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個不透明的袋子中裝有若干個除顏色外均相同的小球,小明每次從袋子中摸出一個球,記錄下顏色,然后放回,重復這樣的試驗1000次,記錄結果如下:

實驗次數n

200

300

400

500

600

700

800

1000

摸到紅球次數m

151

221

289

358

429

497

568

701

摸到紅球頻率

0.75

0.74

0.72

0.72

0.72

0.71

a

b

1)表格中a=________,b=_________;

2)估計從袋子中摸出一個球恰好是紅球的概率約為________;(精確到0.1

3)如果袋子中有14個紅球,那么袋子中除了紅球,還有多少個其他顏色的球?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,圖中的小方格都是邊長為1的正方形,△ABC的A,B,C三點坐標為A(2,0)、B(2,2)、C(6,3)。

(1)請在圖中畫出一個△ ,使△ 與△ABC是以坐標原點為位似中心,相似比為2的位似圖形。
(2)求△ 的面積。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,AB=AC,點D是射線CB上的一動點(不與點BC重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當點D在線段CB上,且∠BAC=90°時,那么∠DCE= 度;

(2)設∠BAC= ,∠DCE=

① 如圖2,當點D在線段CB上,∠BAC≠90°時,請你探究之間的數量關系,并證明你的結論;

② 如圖3,當點D在線段CB的延長線上,∠BAC≠90°時,請將圖3補充完整,并直接寫出此時之間的數量關系(不需證明).

查看答案和解析>>

同步練習冊答案