在圖1至圖4中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE和AD在同一直線上.
操作示例:當AE<a時,如圖1,在BA上選取適當的點G,BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置,恰能構成四邊形FGCH.
思考發(fā)現(xiàn):小明在操作后發(fā)現(xiàn):該剪拼方法是先將△FAG繞點F逆時針旋轉90°到△FEH的位置,易知EH與AD在同一直線上,連接CH.由剪拼方法可得DH=BG,從而又可將△CGB繞點C順時針旋轉90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),
實踐探究:
(1)小明判斷出四邊形FGCH是正方形,請你給出判斷四邊形FGCH是正方形的方法.
(2)經測量,小明發(fā)現(xiàn)圖1中BG是AE一半,請你證明小明的發(fā)現(xiàn)是正確的.(提示:過點F作FM⊥AH,垂足為點M);
拓展延伸
類比圖1的剪拼方法,請你就圖2至圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.