【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸子A、B兩點,與反比例函數(shù)y的圖象交于C、D兩點,DE⊥x軸于點E,已知點C的坐標(biāo)是(6,-1),DE=3.

(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;

(2)根據(jù)圖象直接回答:當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?

【答案】1,;(2

【解析】試題分析:(1)將C坐標(biāo)代入反比例解析式中求出m的值,確定出反比例解析式,再由DE3得到D縱坐標(biāo)為3,將y=3代入反比例解析式中求出x的值,即為D的橫坐標(biāo),設(shè)直線解析式為y=kx+b,將DC的坐標(biāo)代入求出kb的值,即可確定出一次函數(shù)解析式;

2)根據(jù)圖象直接得出結(jié)論.

試題解析:(1C6﹣1)在反比例圖象上,x=6,y=﹣1代入反比例解析式得: ,即,反比例解析式為,D在反比例函數(shù)圖象上,且DE=3,即D縱坐標(biāo)為3,將y=3代入反比例解析式得: ,即x=﹣2,D坐標(biāo)為(﹣2,3),設(shè)直線解析式為,將CD坐標(biāo)代入得: ,解得: 一次函數(shù)解析式為;

2)觀察圖像可知,當(dāng)時,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b、c在數(shù)軸上的位置如圖所示,則:

(1)“<、>、=”填空:a____0,b____0,c_____0;

(2)“<、>、=”填空:﹣a____0,a﹣b____0,c﹣a____0;

(3)化簡:|﹣a|﹣|a﹣b|+|c﹣a|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的圖象經(jīng)過點A(﹣2,0),點B(4,0),點D(2,4),與y軸交于點C,作直線BC,連接AC、CD.
(1)求拋物線的函數(shù)表達(dá)式;
(2)E是拋物線上的點,求滿足∠ECD=∠ACO的點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,四邊形ABCD中,AB=3cmAD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,BC的垂直平分線DEBCD,交ABE,FDE上,并且AFCE

1)求證:四邊形ACEF是平行四邊形;

2)當(dāng)∠B的大小滿足什么條件時,四邊形ACEF是菱形?請回答并證明你的結(jié)論;

3)四邊形ACEF有可能是正方形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在大課間中開設(shè)了A(體操),B(跑操),C(舞蹈),D(健美操)四項活動,為了解學(xué)生最喜歡哪一項活動,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

這次被調(diào)查的學(xué)生共有 人.

請將統(tǒng)計圖2補充完整.

已知該校共有學(xué)生3400人,請根據(jù)調(diào)查結(jié)果估計該校喜歡健美操的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值,

12x2y[3xy2+2xy2+2x2y],其中x=y=2

2)已知a+b=4,ab=﹣2,求代數(shù)式(4a﹣3b﹣2aba﹣6b﹣ab)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)三天假期的某一天,小明全家上午8時自駕小汽車從家里出發(fā),到章丘某旅游景點游玩.該小汽車離家的距離S(千米)與時間t(小時)的關(guān)系如圖所示.根據(jù)圖象提供的有關(guān)信息,下列說法中錯誤的是( )

A. 景點離小明家180千米 B. 小明到家的時間為17點

C. 返程的速度為60千米每小時 D. 10點至14點,汽車勻速行駛

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為正方形ABCD的對角線BD上任一點,過點PPEBC于點E,PFCD于點F,連接EF.給出以下4個結(jié)論:①FPD是等腰直角三角形;②AP=EF;

AD=PD;④∠PFE=BAP.其中,所有正確的結(jié)論是( 。

A. ①② B. ①④ C. ①②④ D. ①③④

查看答案和解析>>

同步練習(xí)冊答案