(2010•荊州)如圖,將正方形ABCD中的△ABD繞對稱中心O旋轉(zhuǎn)至△GEF的位置,EF交AB于M,GF交BD于N.請猜想BM與FN有怎樣的數(shù)量關系?并證明你的結論.

【答案】分析:利用旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì)得出△OBM≌△OFN,從而證明猜想正確.
解答:解:猜想:BM=FN.(2分)
證明:在正方形ABCD中,BD為對角線,O為對稱中心,
∴BO=DO,∠BDA=∠DBA=45°,
∵△GEF為△ABD繞O點旋轉(zhuǎn)所得,
∴FO=DO,∠F=∠BDA,
∴OB=OF,∠OBM=∠OFN,(4分)
在△OMB和△ONF中,
∴△OBM≌△OFN,(6分)
∴BM=FN.(7分)
點評:本題綜合考查了旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•荊州)如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點,BD=OA=,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數(shù)關系;
(3)當△AEF是等腰三角形時,將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(08)(解析版) 題型:解答題

(2010•荊州)如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點,BD=OA=,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數(shù)關系;
(3)當△AEF是等腰三角形時,將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《三角形》(13)(解析版) 題型:解答題

(2010•荊州)如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點,BD=OA=,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數(shù)關系;
(3)當△AEF是等腰三角形時,將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省荊州市中考數(shù)學試卷(解析版) 題型:解答題

(2010•荊州)如圖,直角梯形OABC的直角頂點O是坐標原點,邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點,BD=OA=,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°.
(1)直接寫出D點的坐標;
(2)設OE=x,AF=y,試確定y與x之間的函數(shù)關系;
(3)當△AEF是等腰三角形時,將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省荊州市中考數(shù)學試卷(解析版) 題型:填空題

(2010•荊州)如圖,在平行四邊形ABCD中,∠A=130°,在AD上取DE=DC,則∠ECB的度數(shù)是    度.

查看答案和解析>>

同步練習冊答案