【題目】如圖,AC,BD是四邊形ABCD的對角線,點E,F分別是AD,BC的中點,點M,N分別是AC,BD的中點,連接EM,MF,FN,NE,要使四邊形EMFN為正方形,則需添加的條件是( )
A. AB=CD,AB⊥CDB. AB=CD,AD=BC
C. AB=CD,AC⊥BDD. AB=CD,AD∥BC
【答案】A
【解析】
證出EN、NF、FM、ME分別是△ABD、△BCD、△ABC、△ACD的中位線,得出EN∥AB∥FM,ME∥CD∥NF,EN=AB=FM,ME=CD=NF,證出四邊形EMFN為平行四邊形,當(dāng)AB=CD時,EN=FM=ME=NF,得出平行四邊形ABCD是菱形;當(dāng)AB⊥CD時,EN⊥ME,則∠MEN=90°,即可得出菱形EMFN是正方形.
∵點E,F分別是AD,BC的中點,點M,N分別是AC,BD的中點,
∴EN、NF、FM、ME分別是△ABD、△BCD、△ABC、△ACD的中位線,
∴EN∥AB∥FM,ME∥CD∥NF,EN=AB=FM,ME=CD=NF,
∴四邊形EMFN為平行四邊形,
當(dāng)AB=CD時,EN=FM=ME=NF,
∴平行四邊形ABCD是菱形;
當(dāng)AB⊥CD時,EN⊥ME,
則∠MEN=90°,
∴菱形EMFN是正方形;
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場擬建兩間矩形種牛飼養(yǎng)室,飼養(yǎng)室的一面靠現(xiàn)有墻(墻長>50m),中間用一道墻隔開(如圖),已知計劃中的建筑材料可建圍墻的總長為50m,設(shè)兩飼養(yǎng)室合計長x(m),總占地面積為y(m2)
(1)求y關(guān)于x的函數(shù)表達(dá)式和自變量的取值范圍;
(2)若要使兩間飼養(yǎng)室占地總面積達(dá)到200m2,則各道墻的長度為多少?占地總面積有可能達(dá)到210m2嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知 AD>AB.在邊AD上取點E,連結(jié)CE.過點E作EF⊥CE,與邊AB的延長線交于點F.
(1)證明:△AEF∽△DCE.
(2)若AB=3,AE =4,AD=10,求線段BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC,BD是四邊形ABCD的對角線,點E,F分別是AD,BC的中點,點M,N分別是AC,BD的中點,連接EM,MF,FN,NE,要使四邊形EMFN為正方形,則需添加的條件是( )
A. AB=CD,AB⊥CDB. AB=CD,AD=BC
C. AB=CD,AC⊥BDD. AB=CD,AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4,動點P從點A出發(fā),沿AD方向以每秒1個單位的速度運動,連接BP,作點A關(guān)于直線BP的對稱點E,設(shè)點P的運動時間為t(s).在動點P在射線AD上運動的過程中,則使點E到直線BC的距離等于3時對應(yīng)的t的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E,F分別在正方形ABCD的邊CD,BC上,且,點P在射線BC上(點P不與點F重合).將線段EP繞點E順時針旋轉(zhuǎn)得到線段EG,過點E作GD的垂線QH,垂足為點H,交射線BC于點Q.
(1)如圖1,若點E是CD的中點,點P在線段BF上,線段BP,QC,EC的數(shù)量關(guān)系為________.
(2)如圖2,若點E不是CD的中點,點P在線段BF上,判斷(1)中的結(jié)論是否仍然成立.若成立,請寫出證明過程;若不成立,請說明理由.
(3)正方形ABCD的邊長為6,,,請直接寫出線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林準(zhǔn)備進(jìn)行如下操作試驗:把一根長為的鐵絲剪成兩段,并把每一段各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于,小林該怎么剪?
(2)小峰對小林說:“這兩個正方形的面積之和不可能等于.”他的說法對嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點C,直線y=x被⊙P截得的弦AB的長為,則a的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,BC=20 cm,P,Q,M,N分別從A,B,C,D出發(fā),沿AD,BC,CB,DA方向在矩形的邊上同時運動,當(dāng)有一個點先到達(dá)所在運動邊的另一個端點時,運動即停止.已知在相同時間內(nèi),若BQ=x cm(x≠0),則AP=2x cm,CM=3x cm,DN=x2 cm,
(1)當(dāng)x為何值時,點P,N重合;
(2)當(dāng)x為何值是,以P,Q,M,N為頂點的四邊形是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com