精英家教網 > 初中數學 > 題目詳情
如圖,已知△ABC的三個頂點坐標分別為A(-4,0)、B(1,0)、C(-2,6).
(1)求經過A、B、C三點的拋物線解析式;
(2)設直線BC交y軸于點E,連接AE,求證:AE=CE;
(3)設拋物線與y軸交于點D,連接AD交BC于點F,試問以A、B、F為頂點的三角形與△ABC相似嗎?

【答案】分析:(1)利用待定系數發(fā)求解即可得出拋物線的解析式;
(2)求出直線BC的函數解析式,從而得出點E的坐標,然后分別求出AE及CE的長度即可證明出結論;
(3)求出AD的函數解析式,然后結合直線BC的解析式可得出點F的坐標,由題意得∠ABF=∠CBA,然后判斷出是否等于即可作出判斷.
解答:解:(1)設函數解析式為:y=ax2+bx+c,
由函數經過點A(-4,0)、B(1,0)、C(-2,6),
可得,
解得:,
故經過A、B、C三點的拋物線解析式為:y=-x2-3x+4;

(2)設直線BC的函數解析式為y=kx+b,
由題意得:
解得:,
即直線BC的解析式為y=-2x+2.
故可得點E的坐標為(0,2),
從而可得:AE==2,CE==2,
故可得出AE=CE;

(3)相似.理由如下:
設直線AD的解析式為y=kx+b,
,
解得:,
即直線AD的解析式為y=x+4.
聯(lián)立直線AD與直線BC的函數解析式可得:,
解得:
即點F的坐標為(-,),
則BF==
又∵AB=5,BC==3,
=,=,
=,
又∵∠ABF=∠CBA,
∴△ABF∽△CBA.
故以A、B、F為頂點的三角形與△ABC相似.
點評:此題屬于二次函數的綜合題目,涉及了相似三角形的判定與性質、待定系數法求二次函數解析式,兩點間的距離公式,解答本題要求我們仔細審題,將所學知識聯(lián)系起來,綜合解答.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知△ABC的面積S△ABC=1.
在圖1中,若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,則S△A1B1C1=
1
4
;
在圖2中,若
AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,則S△A2B2C2=
1
3
;
在圖3中,若
AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,則S△A3B3C3=
7
16
;
按此規(guī)律,若
AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,S△A8B8C8=
 

精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ABC的面積為4,且AB=AC,現將△ABC沿CA方向平移CA的長度,得到△EFA.
(1)判斷AF與BE的位置關系,并說明理由;
(2)若∠BEC=15°,求AC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•溫州二模)如圖,已知△ABC的面積是2平方厘米,△BCD的面積是3平方厘米,△CDE的面積是3平方厘米,△DEF的面積是4平方厘米,△EFG的面積是3平方厘米,△FGH的面積是5平方厘米,那么,△EFH的面積是
4
4
 平方厘米.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2010•孝感模擬)如圖,已知△ABC的三個頂點的坐標分別為A(-2,2)、B(-5,0)、C(-1,0).
(1)請直接寫出點A關于y軸對稱的點的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉90°得到△A1B1C1,再將△A1B1C1以C1為位似中心,放大2倍得到△A2B2C1,請畫出△A1B1C1和△A2B2C1,并寫出一個點A2的坐標.(只畫一個△A2B2C1即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知△ABC的三個頂點的坐標分別是A(-7,1),B(-3,3),C(-2,6).
(1)求作一個三角形,使它與△ABC關于y軸對稱;
(2)寫出(1)中所作的三角形的三個頂點的坐標.

查看答案和解析>>

同步練習冊答案