【題目】如圖所示,在正方形ABCD中,G為CD邊中點(diǎn),連接AG并延長交BC邊的延長線于E點(diǎn),對(duì)角線BD交AG于F點(diǎn).已知FG=2,則線段AE的長度為( 。
A. 6 B. 8 C. 10 D. 12
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1)。
(1)以O(shè)點(diǎn)為位似中心在y軸的左側(cè)將△OBC放大到兩倍畫出圖形。
(2)寫出B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B、C的坐標(biāo);
(3)如果△OBC內(nèi)部一點(diǎn)M的坐標(biāo)為(x,y),寫出M的對(duì)應(yīng)點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線 y=ax2﹣5ax+c 交 x 軸于點(diǎn) A,點(diǎn) A 的坐標(biāo)為(4,0).
(1)用含 a 的代數(shù)式表示 c.
(2)當(dāng) a=時(shí),求 x 為何值時(shí) y 取得最小值,并求出 y 的最小值.
(3)當(dāng) a=時(shí),求 0≤x≤6 時(shí) y 的取值范圍.
(4)已知點(diǎn) B 的坐標(biāo)為(0,3),當(dāng)拋物線的頂點(diǎn)落在△AOB 外接圓內(nèi)部時(shí),直接寫出 a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形 OABC 是矩形,點(diǎn) B 的坐標(biāo)為(4,3).
(1)直接寫出A、C兩點(diǎn)的坐標(biāo);
(2)平行于對(duì)角線AC的直線 m 從原點(diǎn)O出發(fā),沿 x 軸正方向以每秒 1 個(gè)單位長度的速度運(yùn)動(dòng),設(shè)直線 m 與矩形 OABC 的兩邊分別交于點(diǎn)M、N,設(shè)直線m運(yùn)動(dòng)的時(shí)間為t(秒).
①若 MN=AC,求 t 的值;
②設(shè)△OMN 的面積為S,當(dāng) t 為何值時(shí),S=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的點(diǎn)D處測得樓頂B的仰角為45°,其中點(diǎn)A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位運(yùn)動(dòng)員在距籃下4m處跳起投籃,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離是2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05m.
(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式.
(2)該運(yùn)動(dòng)員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,
問:球出手時(shí),他距離地面的高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AB=6,BC=8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長為( )
A. 6B. 5C. 4D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線的一部分,如圖
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問這次表演是否成功?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在一個(gè)點(diǎn)M,使得MP=MC,則稱點(diǎn)P為⊙C的“等徑點(diǎn)”,已知點(diǎn)D(,),E(0,2),F(xiàn)(﹣2,0).
(1)當(dāng)⊙O的半徑為1時(shí),
①在點(diǎn)D,E,F(xiàn)中,⊙O的“等徑點(diǎn)”是哪幾個(gè)點(diǎn);
②作直線EF,若直線EF上的點(diǎn)T(m,n)是⊙O的“等徑點(diǎn)”,求m的取值范圍.
(2)過點(diǎn)E作EG⊥EF交x軸于點(diǎn)G,若△EFG各邊上所有的點(diǎn)都是某個(gè)圓的“等徑點(diǎn)”,求這個(gè)圓的半徑r的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com