【題目】如圖,已知AD是△ABC的角平分線,CE是△ABC的高,AD與CE相交于點P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度數.
【答案】解:∵AD是△ABC的角平分線,∠BAC=66°,
∴∠DAC=∠BAD=33°,
∵CE是△ABC的高,∠BCE=40°,
∴∠B=50°,
∠ACB=180°-50°-66°=64°;
∴∠ADC=180°-64°-33°=83°,∠APC=123°
【解析】在直角三角形BCE中∠BCE=40°,可求出∠B=50°,由三角形內角和可求出∠BCA的度數;由AD是∠BAC的角平分線易求∠ADC的度數,再由CE⊥AB易求∠ACE的度數,從而可求∠APC的度數.
【考點精析】認真審題,首先需要了解三角形的“三線”(1、三角形角平分線的三條角平分線交于一點(交點在三角形內部,是三角形內切圓的圓心,稱為內心);2、三角形中線的三條中線線交于一點(交點在三角形內部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點到對邊的距離;注意:三角形的中線和角平分線都在三角形內),還要掌握三角形的內角和外角(三角形的三個內角中,只可能有一個內角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】已知如圖,四邊形ABCD中∠BAD=α,∠BCD=β, BE、DF分別平分四邊形的外角∠MBC和∠NDC
(1)如圖1,若α+β= ,則∠MBC+∠NDC=度;
(2)如圖1,若BE與DF相交于點G,∠BGD=45°,請求出α、β所滿足的等量關系式;
(3)如圖2,若α=β,判斷BE、DF的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點,與y軸交于點C,對稱軸與x軸交于點E,點D為頂點,連接BD、CD、BC.
(1)求證△BCD是直角三角形;
(2)點P為線段BD上一點,若∠PCO+∠CDB=180°,求點P的坐標;
(3)點M為拋物線上一點,作MN⊥CD,交直線CD于點N,若∠CMN=∠BDE,請直接寫出所有符合條件的點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+1(a<0)的圖象過點(1,0)和(x1,0),且﹣2<x1<1,下列5個判斷中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣;⑤2a<b+,正確的是( )
A. ①③ B. ①②③ C. ①②③⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如下圖,有一池塘,要測池塘兩端A、B的距離,可先在平地上取一個可以直接到達A和B的點C , 連結AC并延長到D , 使CD=CA , 連結BC并延長到E , 使CE=CB , 連結DE , A、B的距離為( )
A.線段AC的長度
B.線段BC的長度
C.線段DE長度
D.無法判斷
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com