△ABC是等邊三角形,點D是射線上BC上的一個動點(點D不與點B,C重合,△ADE是以AD為邊的等邊三角形,過點E作BC的平行線,分別交射線AB,AC于點F,G,連接BE。   (10′)

如圖1所示,當點D在線段BC上時。(1)求證:△AEB≌△ADC;(2)探究四邊形BCGE是哪種特殊的四邊形,并說明理由。如圖2所示,當點D在BC的延長線上時,直接寫出(1)中的兩個結(jié)論是否成立。

 

【答案】

(1)①略     ② 平行四邊形    (2)①②都成立

【解析】(1)①利用等邊三角尺是性質(zhì)得到AE=AD,AB=AC,∠EAD=∠BAC=60°,然后得到∠EAB=∠DAC,從而證明兩個三角形全等;

② 根據(jù)全等三角形得到∠ABE=∠BAC,從而得到EB∥GC.再根據(jù)EG∥BC判定四邊形BCGE是平行四邊形即可;

(2)①②都成立

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知a、b、c是△ABC的三條邊長,若x=-1為關(guān)于x的一元二次方程(c-b)x2-2(b-a)x+(a-b)=0的根.
(1)△ABC是等腰三角形嗎?△ABC是等邊三角形嗎?請寫出你的結(jié)論并證明;
(2)若代數(shù)式子
a-2
+
2-a
有意義,且b為方程y2-8y+15=0的根,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC是等邊三角形,D、E分別是BC、CA上的點,且BD=CE.
(1)求證:AD=BE;(2)求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,
(1)用直尺和圓規(guī)作邊BC的高線AD交BC于點D(保留作圖痕跡,不要求寫作法);
(2)若△ABC的邊長為2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2009•裕華區(qū)二模)已知,如圖△ABC是等邊三角形,將一塊含30°角的直角三角板DEF如圖放置,讓△ABC在BC所在的直線l上向左平移.當點B與點E重合時,點A恰好落在三角板的斜邊DF上的M點,點C在N點位置上(假定AB、AC與三角板斜邊的交點為G、H)
問:(1)在△ABC平移過程中,通過測量CH、CF的長度,猜想CH、CF滿足的數(shù)量關(guān)系;
(2)在△ABC平移過程中,通過測量BE、AH的長度,猜想BE.AH滿足的數(shù)量關(guān)系;
(3)證明(2)中你的猜想.(證明不得含有圖中未標示的字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,AB=AC,若要使△ABC是等邊三角形,那么需添加一個條件:
AB=BC
AB=BC
∠A=60°
∠A=60°
(從不同角度填空).

查看答案和解析>>

同步練習冊答案