【題目】“校園安全”受到社會的廣泛關(guān)注,某校政教處對部分學(xué)生就校園安全知識的了解程度,進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有______名;

(2)請補(bǔ)全折線統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角的大。

【答案】(1)60;(2)圖形見解析,“基本了解”部分所對應(yīng)扇形的圓心角的大小為90°.

【解析】試題分析:1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學(xué)生數(shù);
2)由(1)可求得了解的人數(shù),繼而補(bǔ)全折線統(tǒng)計(jì)圖;求得扇形統(tǒng)計(jì)圖中基本了解部分所對應(yīng)扇形的圓心角;

試題解析:(1)∵了解很少的有30人,占50%,

∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60()

了解的人數(shù)為: ();

補(bǔ)全統(tǒng)計(jì)圖,如圖所示:

扇形統(tǒng)計(jì)圖中基本了解部分所對應(yīng)扇形的圓心角為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是邊BC上的中線,AEBC,DEAB,DEAC交于點(diǎn)O,連接CE

1)求證:ADEC

2)若∠BAC90°,求證:四邊形ADCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,今年山東省面向縣級及農(nóng)村地區(qū)推廣節(jié)能燈,為響應(yīng)號召,某商場計(jì)劃購進(jìn)甲、乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進(jìn)價、售價如下表:

進(jìn)價(/)

售價(/)

25

30

45

60

(1)如何進(jìn)貨,進(jìn)貨款恰好為46000元?

(2)如何進(jìn)貨,商場銷售完節(jié)能燈時獲利最多且不超過進(jìn)貨價的30%,此時利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù),B點(diǎn)示數(shù),C點(diǎn)表示數(shù),是最小的正整數(shù),且滿足

(1)=__________,=__________,=__________;

(2)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù)__________表示的點(diǎn)重合;

(3)若點(diǎn)A、點(diǎn)B和點(diǎn)C分別以每秒2個單位、1個單位長度和4個單位長度的速度在數(shù)軸上同時向左運(yùn)動,假設(shè)秒鐘過后,A、B、C三點(diǎn)中恰有一點(diǎn)為另外兩點(diǎn)的中點(diǎn),求的值;

(4)若點(diǎn)A、點(diǎn)B和點(diǎn)C分別以每秒2個單位、1個單位長度和4個單位長度的速度在數(shù)軸上同時向左運(yùn)動時,小聰同學(xué)發(fā)現(xiàn):當(dāng)點(diǎn)CB點(diǎn)右側(cè)時,BC+3AB的值是個定值,求此時的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)、分別在、軸上,已知點(diǎn)的坐標(biāo)為,且.

1 2 3

1)求的長度;

2)以為一邊作等邊,過點(diǎn),交的垂直平分線于點(diǎn).求證:

3)在(2)的條件下,連接,求證:的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形OABC的邊長為2,頂點(diǎn)A,C分別在x軸,y軸的正半軸上,點(diǎn)E是BC的中點(diǎn),F(xiàn)是AB延長線上一點(diǎn)且FB=1.

(1)求經(jīng)過點(diǎn)O,A,E三點(diǎn)的拋物線解析式;

(2)點(diǎn)P在拋物線上運(yùn)動,當(dāng)點(diǎn)P運(yùn)動到什么位置時△OAP的面積為2,請求出點(diǎn)P的坐標(biāo);

(3)在拋物線上是否存在一點(diǎn)Q,使△AFQ是等腰直角三角形?若存在直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《代數(shù)學(xué)》中記載,形如x2+10x=39的方程,求正數(shù)解的幾何方法是:“如圖1,先構(gòu)造一個面積為x2的正方形,再以正方形的邊長為一邊向外構(gòu)造四個面積為x的矩形,得到大正方形的面積為39+25=64,則該方程的正數(shù)解為8-5=3”,小聰按此方法解關(guān)于x的方程x2+6x+m=0時,構(gòu)造出如圖2所示的圖形,己知陰影部分的面積為36,則該方程的正數(shù)解為( )

A.6B.3-3C.3-2D.3-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行比賽的路程與時間的關(guān)系如圖所示.

(1)這是一場________米比賽;

(2)前一半賽程內(nèi)________的速度較快,最終________贏得了比賽;

(3)兩人第________秒在途中相遇,相遇時距終點(diǎn)________米;

(4)甲在前8秒的平均速度是多少?甲在整個賽程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整個賽程的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對某一個函數(shù)給出如下定義:若存在實(shí)數(shù)M0,對于任意的函數(shù)值y,都滿足﹣M≤y≤M,則稱這個函數(shù)是有界函數(shù),在所有滿足條件的M中,其最小值稱為這個函數(shù)的邊界值.例如,如圖中的函數(shù)是有界函數(shù),其邊界值是1

1)分別判斷函數(shù) y=x0)和y=x+1﹣4≤x≤2)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;

2)若函數(shù)y=﹣x+1a≤x≤bba)的邊界值是2,且這個函數(shù)的最大值也是2,求b的取值范圍;

3)將函數(shù) y=x2﹣1≤x≤mm≥0)的圖象向下平移m個單位,得到的函數(shù)的邊界值是t,當(dāng)m在什么范圍時,滿足≤t≤1?

查看答案和解析>>

同步練習(xí)冊答案