分析 (1)利用CD∥y軸,CD=10可得到D(-4,6),然后把點D的坐標(biāo)代入y=-$\frac{1}{2}$x+m中求出m的值即可得到直線l的解析式;
(2)先根據(jù)坐標(biāo)軸上點的坐標(biāo)特征求出A、B點的坐標(biāo),再利用兩點間的距離公式計算BA和BC的長,從而可判斷△ABC是等腰三角形.
解答 (1)解:∵CD∥y軸,CD=10,
而C(-4,-4),
∴D(-4,6),
把D(-4,6)代入y=-$\frac{1}{2}$x+m得2+m=6,解得m=4,
∴直線l的解析式為y=-$\frac{1}{2}$x+4;
(2)證明:當(dāng)y=0時,-$\frac{1}{2}$x+4=0,解得x=8,則A(8,0),
當(dāng)x=0時,y=-$\frac{1}{2}$x+4=4,
∵AB=$\sqrt{{4}^{2}+{8}^{2}}$=4$\sqrt{5}$,BC=$\sqrt{{4}^{2}+(4+4)^{2}}$=4$\sqrt{5}$,
∴BA=BC,
∴△ABC是等腰三角形.
點評 本題考查了兩直線相交或平行問題:兩條直線的交點坐標(biāo),就是由這兩條直線相對應(yīng)的一次函數(shù)表達(dá)式所組成的二元一次方程組的解;若兩條直線是平行的關(guān)系,那么他們的自變量系數(shù)相同,即k值相同.也考查了兩點間的距離公式.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com