如圖,將一組對(duì)邊平行的紙條沿EF折疊,點(diǎn)A,B分別落在A′B′處,線段FB′與AD交于點(diǎn)M.試判斷△MEF的形狀,并證明你的結(jié)論.
分析:由AD∥BC,得∠MEF=∠EFB.由折疊的性質(zhì)知∠MFE=∠EFB,所以∠MEF=∠MFE?ME=MF,即△MEF為等腰三角形.
解答:答:△MEF為等腰三角形.
證明:∵AD∥BC,
∴∠MEF=∠EFB.
∵∠MFE=∠EFB,
∴∠MEF=∠MFE.
∴ME=MF,即△MEF為等腰三角形
點(diǎn)評(píng):本題利用了:①折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等;②平行線的性質(zhì),等角對(duì)等邊,平行四邊形和菱形的判定及性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖①,將一組對(duì)邊平行的紙條沿EF折疊,點(diǎn)A,B分別落在A′,B′處,線段FB′與AD交于點(diǎn)M.
(1)試判斷△MEF的形狀,并證明你的結(jié)論;
(2)如圖②,將紙條的另一部分CFMD沿MN折疊,點(diǎn)C,D分別落在C′,D′處,且使MD′經(jīng)過點(diǎn)F,試判斷四邊形MNFE的形狀,并證明你的結(jié)論;
(3)當(dāng)∠BFE=
60
度時(shí),四邊形MNFE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,將一組對(duì)邊平行的紙條沿EF折疊,點(diǎn)A,B分別落在A′B′處,線段FB′與AD交于點(diǎn)M.試判斷△MEF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省揚(yáng)州中學(xué)樹人學(xué)校中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖①,將一組對(duì)邊平行的紙條沿EF折疊,點(diǎn)A,B分別落在A′,B′處,線段FB′與AD交于點(diǎn)M.
(1)試判斷△MEF的形狀,并證明你的結(jié)論;
(2)如圖②,將紙條的另一部分CFMD沿MN折疊,點(diǎn)C,D分別落在C′,D′處,且使MD′經(jīng)過點(diǎn)F,試判斷四邊形MNFE的形狀,并證明你的結(jié)論;
(3)當(dāng)∠BFE=______度時(shí),四邊形MNFE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的對(duì)稱》(05)(解析版) 題型:解答題

(2007•長春)如圖①,將一組對(duì)邊平行的紙條沿EF折疊,點(diǎn)A,B分別落在A′,B′處,線段FB′與AD交于點(diǎn)M.
(1)試判斷△MEF的形狀,并證明你的結(jié)論;
(2)如圖②,將紙條的另一部分CFMD沿MN折疊,點(diǎn)C,D分別落在C′,D′處,且使MD′經(jīng)過點(diǎn)F,試判斷四邊形MNFE的形狀,并證明你的結(jié)論;
(3)當(dāng)∠BFE=______度時(shí),四邊形MNFE是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案