已知的半徑,圓心到直線的距離為,當(dāng)時(shí),直線的位置關(guān)系是(    )

A.相交     B.相切     C.相離    D.以上都不對(duì)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)善于思考的小迪發(fā)現(xiàn):半徑為a,圓心在原點(diǎn)的圓(如圖1),如果固定直徑AB,把圓內(nèi)的所有與y軸平行的弦都?jí)嚎s到原來(lái)的
b
a
倍,就得到一種新的圖形-橢圓(如圖2).她受祖沖之“割圓術(shù)”的啟發(fā),采用“化整為零,積零為整”、“化曲為直,以直代曲”的方法,正確地求出了橢圓的面積,她求得的結(jié)果為
 
;
(2)小迪把圖2的橢圓繞x軸旋轉(zhuǎn)一周得到一個(gè)“精英家教網(wǎng)雞蛋型”的橢球.已知半徑為a的球的體積為
4
3
πa3,則此橢球的體積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是某學(xué)校田徑體育場(chǎng)一部分的示意圖,第一條跑道每圈為400米,跑道分直道和彎道,直道為長(zhǎng)相等的平行線段,彎道為同心的半圓型,彎道與直道相連接,已知直精英家教網(wǎng)道BC的長(zhǎng)86.96米,跑道的寬為l米.(π=3.14,結(jié)果精確到0.01)
(1)求第一條跑道的彎道部分
AB
的半徑.
(2)求一圈中第二條跑道比第一條跑道長(zhǎng)多少米?
(3)若進(jìn)行200米比賽,求第六道的起點(diǎn)F與圓心O的連線FO與OA的夾角∠FOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年初中畢業(yè)升學(xué)考試(浙江臺(tái)州卷)數(shù)學(xué)(解析版) 題型:填空題

(1)善于思考的小迪發(fā)現(xiàn):半徑為,圓心在原點(diǎn)的圓(如圖1),如果固定直徑,把圓內(nèi)的所有與軸平行的弦都?jí)嚎s到原來(lái)的倍,就得到一種新的圖形橢圓(如圖2),她受祖沖之“割圓術(shù)”的啟發(fā),采用“化整為零,積零為整”“化曲為直,以直代曲”的方法.正確地求出了橢圓的面積,她求得的結(jié)果為     

(2)(本小題為選做題,做對(duì)另加3分,但全卷滿分不超過(guò)150分)小迪把圖2的橢圓繞軸旋轉(zhuǎn)一周得到一個(gè)“雞蛋型”的橢球.已知半徑為的球的體積為,則此橢球的體積為      

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)善于思考的小迪發(fā)現(xiàn):半徑為a,圓心在原點(diǎn)的圓(如圖1),如果固定直徑AB,把圓內(nèi)的所有與y軸平行的弦都?jí)嚎s到原來(lái)的數(shù)學(xué)公式倍,就得到一種新的圖形-橢圓(如圖2).她受祖沖之“割圓術(shù)”的啟發(fā),采用“化整為零,積零為整”、“化曲為直,以直代曲”的方法,正確地求出了橢圓的面積,她求得的結(jié)果為_(kāi)_______;
(2)小迪把圖2的橢圓繞x軸旋轉(zhuǎn)一周得到一個(gè)“雞蛋型”的橢球.已知半徑為a的球的體積為數(shù)學(xué)公式πa3,則此橢球的體積為_(kāi)_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圓》(14)(解析版) 題型:解答題

(2002•濰坊)如圖是某學(xué)校田徑體育場(chǎng)一部分的示意圖,第一條跑道每圈為400米,跑道分直道和彎道,直道為長(zhǎng)相等的平行線段,彎道為同心的半圓型,彎道與直道相連接,已知直道BC的長(zhǎng)86.96米,跑道的寬為l米.(π=3.14,結(jié)果精確到0.01)
(1)求第一條跑道的彎道部分的半徑.
(2)求一圈中第二條跑道比第一條跑道長(zhǎng)多少米?
(3)若進(jìn)行200米比賽,求第六道的起點(diǎn)F與圓心O的連線FO與OA的夾角∠FOA的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案