【題目】如圖①,在正方形ABCD中,點(diǎn)E與點(diǎn)F分別在線段AC、BC上,且四邊形DEFG是正方形.
(1)試探究線段AE與CG的關(guān)系,并說明理由.
(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=4.
①線段AE、CG在(1)中的關(guān)系仍然成立嗎?若成立,請證明,若不成立,請寫出你認(rèn)為正確的關(guān)系,并說明理由.
②當(dāng)△CDE為等腰三角形時,求CG的長.
【答案】(1)AE=CG,AE⊥CG,理由見解析;(2)①位置關(guān)系保持不變,數(shù)量關(guān)系變?yōu)?/span>;
理由見解析;②當(dāng)△CDE為等腰三角形時,CG的長為或或.
【解析】試題分析: 證明≌即可得出結(jié)論.
①位置關(guān)系保持不變,數(shù)量關(guān)系變?yōu)?/span>證明根據(jù)相似的性質(zhì)即可得出.
分成三種情況討論即可.
試題解析:(1)
理由是:如圖1,∵四邊形EFGD是正方形,
∴
∵四邊形ABCD是正方形,
∴
∴
∴≌
∴
∵
∴
∴ 即
(2)①位置關(guān)系保持不變,數(shù)量關(guān)系變?yōu)?/span>
理由是:如圖2,連接EG、DF交于點(diǎn)O,連接OC,
∵四邊形EFGD是矩形,
∴
Rt 中,OG=OF,
Rt 中,
∴
∴D、E、F、C、G在以點(diǎn)O為圓心的圓上,
∵
∴DF為的直徑,
∵
∴EG也是的直徑,
∴∠ECG=90°,即
∴
∵
∴
∵
∴
∴
②由①知:
∴設(shè)
分三種情況:
(i)當(dāng)時,如圖3,過E作于H,則EH∥AD,
∴
∴ 由勾股定理得:
∴
(ii)當(dāng)時,如圖4,過D作于H,
∵
∴
∴
∴
∴
∴
(iii)當(dāng)時,如圖5,
∴
∴
綜上所述,當(dāng)為等腰三角形時,CG的長為或或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵民眾節(jié)約用電,城鎮(zhèn)居民生活用電電費(fèi)目前實(shí)行梯度收費(fèi),具體標(biāo)準(zhǔn)如下表:
月用電量(單位:千瓦時) | 單價(單位:元) |
150以內(nèi)(含150) | 0.5 |
超過150但不超過300的部分(含300) | 0.6 |
300以上(不含300)的部分 | 0.8 |
(1)若月用電100千瓦時,應(yīng)交電費(fèi)多少元?若月用電200千瓦時,應(yīng)交電費(fèi)多少元?
(2)若某用戶12月應(yīng)交電費(fèi)93元,該用戶12月的用電量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩桶水,甲桶裝有升水,乙桶中的水比甲桶中的水多3升.現(xiàn)將甲桶中倒一半到乙桶中,然后再將此時乙桶中總水量的倒給甲桶,假定桶足夠大,水不會溢岀.我們將上述兩個步驟稱為一次操作,進(jìn)行重復(fù)操作,則( )
A. 每操作一次,甲桶中的水量都會減小,最后甲桶中的水會全部倒入乙桶
B. 每操作一次,甲桶中的水量都會減小,但永遠(yuǎn)倒不完
C. 每操作一次,甲桶中的水量都會增加,反復(fù)操作,最后甲桶中的水會比乙桶多
D. 每操作一次,甲桶中的水量都會增加,但永遠(yuǎn)比乙桶中的水量要少
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與四邊形BEFG都是正方形,設(shè)AB=a,DE=b(a>b).
(1)寫出AG的長度(用含字母a、b的代數(shù)式表示);
(2)觀察圖形,試用不同的方法表示圖形中陰影部分的面積,你能獲得相應(yīng)的一個因式分解公式嗎?請將這個公式寫出來;
(3)如果正方形ABCD的邊長比正方形DEFG的邊長多16cm,它們的面積相差960cm2.試?yán)?/span>⑵中的公式,求a、b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇準(zhǔn)備完成題目:化簡:,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).”通過計算說明原題中“”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)市委政府“加快建設(shè)天藍(lán)水碧地綠的美麗長沙”的號召,我市某街道決定從備選的五種樹中選購一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行“我最喜歡的一種樹”的調(diào)查活動(每人限選其中一種樹),并將調(diào)查結(jié)果整理后,繪制成如圖兩個不完整的統(tǒng)計圖:
請根據(jù)所給信息解答以下問題:
(1)這次參與調(diào)查的居民人數(shù)為: ;
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)請計算扇形統(tǒng)計圖中“楓樹”所在扇形的圓心角度數(shù);
(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請你估計這8萬人中最喜歡玉蘭樹的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)M是AC的中點(diǎn),以AB為直徑作⊙O分別交AC,BM于點(diǎn)D,E.連結(jié)DE,使四邊形DEBA為⊙O的內(nèi)接四邊形.
(1)求證:∠A=∠ABM=∠MDE;
(2)若AB=6,當(dāng)AD=2DM時,求DE的長度;
(3)連接OD,OE,當(dāng)∠A的度數(shù)為60°時,求證:四邊形ODME是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條直線被第三條直線所截,就第三條直線上的兩個交點(diǎn)而言形成了“三線八角”為了便于記憶,同學(xué)們可仿照圖用雙手表示“三線八角”兩大拇指代表被截直線,食指代表截線下列三幅圖依次表示
A. 同位角、同旁內(nèi)角、內(nèi)錯角B. 同位角、內(nèi)錯角、同旁內(nèi)角
C. 同位角、對頂角、同旁內(nèi)角D. 同位角、內(nèi)錯角、對頂角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.過點(diǎn)D作DG∥BE,交BC于點(diǎn)G,連接FG交BD于點(diǎn)O.若AB=6,AD=8,則DG的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com